Skip to main content
Log in

Inhibition of the Mitochondrial Respiratory Chain by Phenylalanine in Rat Cerebral Cortex

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is biochemically characterized by the accumulation of phenylalanine (Phe) and its metabolites in tissues of affected children. Neurological damage is the clinical hallmark of PKU, and Phe is considered the main neurotoxic metabolite in this disorder. However, the mechanisms of neurotoxicity are poorly known. The main objective of the present work was to measure the activities of the mitochondrial respiratory chain complexes (RCC) and succinate dehydrogenase (SDH) in brain cortex of Wistar rats subjected to chemically induced hyperphenylalaninemia (HPA). We also investigated the in vitro effect of Phe on SDH and RCC activities in the cerebral cortex of 22-day-old rats. HPA was induced by subcutaneous administration of 2.4 μmol/g body weight α-methylphenylalanine, a phenylalanine hydroxylase inhibitor, once a day, plus 5.2 μM/g body weight phenylalanine, twice a day, from the 6th-21st postnatal day. The results showed a reduction of SDH and complex I + III activity in brain cortex of rats subjected to HPA. We also verified that Phe inhibited the in vitro activity of complexes I + III, possibly by competition with NADH. Considering the importance of SDH and RCC for the maintenance of energy supply to brain, our results suggest that energy deficit may contribute to the Phe neurotoxicity in PKU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Scriver, C. R. and Kaufman, S. 2001. Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. Pages 1667–1724 in Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D. (eds): The Metabolic & Molecular Bases of Inherited Diseases, 8th ed., McGraw-Hill, New York.

    Google Scholar 

  2. Rodrigues, N. R., Wannmacher, C. M. D., Dutra-Filho, C. S., Pires, R. F., Fagan, P. R., and Wajner, M. 1990. Effect of phenylalanine, p-chlorophenylalanine and a-methylphenylalanine on glucose uptake in vitro by the brain of young rats. Biochem. Soc. Trans. 18:419.

    Google Scholar 

  3. Wyse, A. T. S., Bolognesi, G., Brusque, A. M., Wajner, M., and Wannmacher, C. M. D. 1995. Na+, K+ -ATPase activity in the synaptic plasma membrane from the cerebral cortex of rats subjected to chemically induced phenylketonuria. Med. Sci. Res. 23:261–262.

    Google Scholar 

  4. De Freitas, M. S., de Mattos, A. G., Camargo, M. M., Wannmacher, C. M. D., and Pessoa-Pureu, R.. 1995. Effect of phenylalanine and α-methylphenylalanine on in vitro incorporation of 32P into cytoskeletal cerebral proteins. Neurochem. Int. 26:381–385.

    Google Scholar 

  5. Hasselbach, S., Knudsen, G. M., Toft, P. B., Hogh, P., Tedeschi, E., Holm, S., Videbaek, C., Henriksen, O., Lou, H.C., Paulson, O. B. 1996. Cerebral glucose metabolism is decreased in white matter changes in patients with phenylketonuria. Pediatr. Res. 40:21–24.

    Google Scholar 

  6. Bauman, M. L. and Kemper, T. L. 1982. Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta. Neuropathol. 58:55–60.

    Google Scholar 

  7. Di Donato, S. 2000. Disorders related to mitochondrial membranes: pathology of the respiratory chain and neurodegeneration. J. Inher. Metab. Dis. 23:247–263.

    Google Scholar 

  8. Wallace, D. C. 1999. Mitochondrial diseases in man and mouse. Science 283:1482–1488.

    Google Scholar 

  9. Babcock, G. T., Wikström, M. 1992. Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309.

    Google Scholar 

  10. Wyse, A. T. S., Sarkis, J. J. F. S., Cunha-Filho, J. S., Teixeira, M. V., Schetinger, M. R., Wajner, M., and Wannmacher, C. M. D. 1994. Effect of phenylalanine and its metabolites on ATP diphosphohydrolase activity in synaptosomes from rat cerebral cortex. Neurochem. Res. 19:1175–1180.

    Google Scholar 

  11. Fischer, J. C., Ruitenbeek, W., Berden, J. A., Trijbels, J. M., Veerkamp, J. H., Stadhouders, A. M., Sengers, R. C., and Janssen, A. J., 1985. Differencial investigation of the capacity of succinate oxidation in human skeletal muscle. Clin. Chim. Acta 153:23–36.

    Google Scholar 

  12. Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Rötig, A., Saudubray, J. M., and Munnich, A. 1994. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228:35–51.

    Google Scholar 

  13. Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D. 1990. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54:823–827.

    Google Scholar 

  14. Sorensen, R. G. and Mahler, H. R. 1982. Localization of endogenous ATPases at the nerve terminal. J. Bioenerg. Biomembr. 14:527–547.

    Google Scholar 

  15. . Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  16. Lê-Quôc, K., Lê-Quôc, D., and Gaudemer, Y. 1981. Evidence for the existence of two classes of sulfhydryl groups essential for membrane-bound succinate dehydrogenase activity. Biochemistry 20:1705–1710.

    Google Scholar 

  17. Kienzle-Hagen, M. E., Pederzolli, C. D., Sgaravatti, A. M., Bridi, R., Wajner, M., Wannmacher, C. M. D., Wyse, A. T. S., and Dutra-Filho, C. S. 2001. Experimental phenylketonuria provokes oxidative stress in rat brain. J. Inher. Metab. Dis. 24:131.

    Google Scholar 

  18. Sierra, C., Vilaseca, M. A., Moyano, D., Brandi, N., Campistol, J., Lambruschini, N. F. J., Cambra, F. J., Deulofeu, R., and Mira, A. 1998. Antioxidant status in hyperphenylalaninemia. Clin. Chim. Acta 276:1–9.

    Google Scholar 

  19. Weber, G. 1969. Inhibition of human brain pyruvate kinase and hexokinase by phenylalanine and phenylpiruvate: possible relevance to phenylketonuric brain damage. Proc. Natl. Acad. Sci. USA 63:1365–1369.

    Google Scholar 

  20. Tanji, K. and Bonilla, E. 2000. Neuropathological aspects of cytochrome c oxidase deficiency. Brain Pathol. 10:420–430.

    Google Scholar 

  21. Schapira, A. H. 1999. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim. Biophys. Acta 1410:159–170.

    Google Scholar 

  22. Ramsey, R. R., Krueger, M. J., Youngster, S. K., Gluck, M. R., Casida, J. E., and Singer, J. 1991. Interaction of 1–methyl-4–phenylpiridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J. Neurochem. 56:1184–1190.

    Google Scholar 

  23. Rutter, G. A. and Rizzuto, R. 2000. Regulation of mitochondrial metabolism by ERCa2+ release: an intimate connection. Trends Biochem. Sci. 25:215–221.

    Google Scholar 

  24. Di Lisa, F. and Bernardi, P. 1998. Mitochondrial function: a determinant of recovery or death in cell response to injury. Mol. Cell Biochem. 184:379–391.

    Google Scholar 

  25. Takeshiga, K. and Minakami, S. 1979. NADH and NADPHdependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180:129–135.

    Google Scholar 

  26. Beyer, R. 1991. An analysis of the role of coenzyme Q in free radical generation and as an anti-oxidant. Biochem. Cell Biol. 70:343–390.

    Google Scholar 

  27. Robinson, B. H. 1994. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim. Biophys. Acta 1364:271–276.

    Google Scholar 

  28. Pitkãnen, S. and Robinson, B. H. 1996. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J. Clin. Invest. 98:345–351.

    Google Scholar 

  29. Chinopoulos, C. and Adam-Vizi, V. 2001. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson's disease. J. Neurochem. 76:302–306.

    Google Scholar 

  30. Hasegawa, E., Takeshige, K., Oishi, T., Murai, Y., and Minikami, S. 1990. 1–Methyl-4–phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun. 170:1049–1055.

    Google Scholar 

  31. Beal, M. E. 2000. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 23:298–304.

    Google Scholar 

  32. Schinder, A. F., Olson, E. C., Spitzer, N. C., and Montal, M. 1996. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16:6125–6133.

    Google Scholar 

  33. Massieu, L., Del Rio, P., and Montiel, T. 2001. Neurotoxicity of glutamate uptake inhibition in vivo: correlation with succinate dehydrogenase activity and prevention by energy substrates. Neuroscience 106:669–677.

    Google Scholar 

  34. Ferger, B., Eberhardt, O., Teismann, P., de Groote, C., and Schulz, J. B. 1999. Malonate-induced generation of reactive oxygen species in rat striatum depends on dopamine release but not on NMDA receptor activation. J. Neurochem. 17:1329–1332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rech, V.C., Feksa, L.R., Dutra-Filho, C.S. et al. Inhibition of the Mitochondrial Respiratory Chain by Phenylalanine in Rat Cerebral Cortex. Neurochem Res 27, 353–357 (2002). https://doi.org/10.1023/A:1015529511664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015529511664

Navigation