Skip to main content
Log in

Isolation of pig colonic crypts for cytotoxic assay of luminal compounds: Effects of hydrogen sulfide, ammonia, and deoxycholic acid

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Some colonic luminal molecules resulting from bacterial metabolism of alimentary or endogenous compounds are believed to exert various effects on the colonic epithelial cell physiology. We isolated surface epithelial cells and intact colonic crypts in order to test bacterial metabolites in the pig model, which is often considered relevant for extrapolation to the physiopathology of the human gastrointestinal tract. Using colonocytes isolated with EDTA, we found that the initial cell viability, estimated by the membrane integrity and oxidative capacity measurement, fell rapidly despite several experimental attempts to preserve it such as the use of a medium designed to increase the adherence of epithelial cells and of a coated extracellular matrix, the presence in the culture medium of the oxidative substrate butyrate, and the use of an inhibitor of the caspases involved in cell apoptosis. In contrast, using dispase and collagenase as proteolytic agents, we were able to obtain pig colonic crypts that maintain an excellent membrane integrity after 4 h. Using this preparation, we were able to test the presumably cytotoxic luminal compounds hydrogen sulfide, ammonia, and deoxycholic acid on colonic crypt viability. Of these, only deoxycholic acid was found to significantly alter the cellular membrane integrity. It is concluded that pig colonic crypts can be useful for thein vitro appraisal of the cytotoxic properties of luminal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahnen DJ. Etiology of large bowel cancer. In: Philipps S, Pemberton J, Shorter R, eds. The large intestine: physiology, pathology and disease. New York: Raven Press; 1991:501–20.

    Google Scholar 

  • Ardawi MS, Newshoime EA. Fuel utilization in colonocytes of the rat. Biochem J. 1985; 231:713–9.

    PubMed  CAS  Google Scholar 

  • Bartram HP, Scheppach W, Schmid H, et al. Proliferation of human coionic mucosa as an intermediate biomarker of carcinogenesis: effects of butyrate, deoxycholate, calcium, ammonia, and pH. Cancer Res. 1993:53:3283–8.

    PubMed  CAS  Google Scholar 

  • Blachier F, Robert V, Selamnia M, Mayeur C, Duee PH. Sodium nitroprusside inhibits proliferation and putrescine synthesis in human colon carcinoma cells. FEBS Lett. 1996; 396:315–18.

    Article  PubMed  CAS  Google Scholar 

  • Branka JE, Vallette G, Jarry A, et al. Early functional effects of Clostridium difficile toxin A on human colonocytes. Gastroenterology. 1997:112:1887–94.

    Article  PubMed  CAS  Google Scholar 

  • Bull AW, Marnett LJ, Dawe EJ, Nigro ND. Stimulation of deoxythymidine incorporation in the colon of rats treated intrarectally with bile acids and fats. Carcinogenesis. 1983; 4:207–10.

    PubMed  CAS  Google Scholar 

  • Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am JAnat. 1974:141:537–61.

    Article  CAS  Google Scholar 

  • Chopra DP, Yeh KY. Long-term culture of epithelial cells from the normal rat colon. InVitro. 1981:17:441–9.

    CAS  Google Scholar 

  • Darcy-Vrillon B, Morel MT, Cherbuy C, et al. Metabolic characteristics of pig colonocytes after adaptation to a high fiber diet. JNutr. 1993:123:234–43.

    CAS  Google Scholar 

  • Evans GS, Flint N, Somers AS, Eyden B, Potten CS. The development of a method for the preparation of rat intest-inal epithelial cell primary cultures. J Cell Sci. 1992:101: 219–31.

    PubMed  Google Scholar 

  • Florin T, Neale G, Gibson GR, Christi SU, Cummings JH. Metabolism of dietary sulphate: absorption and excretion in humans. Gut. 1991:32:766–73.

    PubMed  CAS  Google Scholar 

  • Fry RJM, Staffeldt E. Effect of a diet containing sodium deoxycholate on the intestinal mucosa of the mouse. Nature. 1964:203:1396–8.

    Article  PubMed  CAS  Google Scholar 

  • Goerg KJ, Specht W, Nell G, Rummel W, Schuiz L. Effect of deoxycholate on the perfused rat colon. Scanning and transmission electron microscopic study of the morphologi-cal alterations occurring during the secretagogue action of deoxycholate. Digestion. 1982:25:145–54.

    Article  PubMed  CAS  Google Scholar 

  • Grossmann J, Maxson JM, Whitacre CM, et al. New isolation technique to study apoptosis in human intestinal epithelial cells. Am J Pathol. 1998a;153:53–62.

    PubMed  CAS  Google Scholar 

  • Grossmann J, Mohr S, Lapentina EG, Fiocchi C, Levine AD. Sequential and rapid activation of select caspases during apoptosis of normal intestinal epithelial cells. Am J Physiol. 1998b;274:GI 117–24.

    Google Scholar 

  • Hass R, Busche R, Luciano L, Reale E, Engelhardt WV. Lack of butyrate is associated with induction of Bax and subse-quent apoptosis in the proximal colon of guinea pig. Gastroenterology. 1997:112:875–81.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Sakata T. Stimulation of epithelial cell prolifera-tion of isolated distal colon of rats by continuous coionic infusion of ammonia or short-chain fatty acids is nonadditive. JNutr. 1998:128:843–7.

    CAS  Google Scholar 

  • Levitt MD, Fume J, Springfield J, Suarez F, DeMaster E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest. 1999:104:1107–4.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ML, Moriarity DM, Campbell PS. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model. J Cell Biochem. 1993:51:265–73.

    Article  PubMed  CAS  Google Scholar 

  • Lin HC, Visek WJ. Colon mucosal cell damage by ammonia in rats. JNutr. 1991a;121:887–93.

    CAS  Google Scholar 

  • Lin HC, Visek WJ. Large intestinal pH and ammonia in rats: dietary fat and protein interactions. J Nutr. 1991b;121:832–43.

    PubMed  CAS  Google Scholar 

  • Lipkin M. Growth and development of gastrointestinal cells. Annu Rev Physiol. 1985:47:175–97.

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951:193:265–75.

    PubMed  CAS  Google Scholar 

  • Luciano L, Hass R, Busche R, von Engelhardt W, Reale E. Withdrawal of butyrate from the coionic mucosa triggers “mass apoptosis” primarily in the GO/GI phase of the cell cycle. Cell Tissue Res. 1996:286:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Luft J. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961:9:409–14.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane G, Cummings J. The coionic flora, fermentation and large bowel digestive function. In: Philipps S, Pemberton J, Shorter R, eds. The large intestine: physiology, pathology and disease. New York: Raven Press; 1991:51–92.

    Google Scholar 

  • Macfarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. JAppI Bacteriol. 1992:72:57–64.

    CAS  Google Scholar 

  • Moore JW, Babidge W, Millard S, Roediger WE. Effect of sulphide on short chain acyl-CoA metabolism in rat colo-nocytes. Gut. 1997:41:77–81.

    Article  PubMed  CAS  Google Scholar 

  • Mouille B, Morel E, Robert V, Guihot-Joubrel G, Blachier F. Metabolic capacity for L-citrulline synthesis from ammonia in rat isolated colonocytes. Biochim Biophys Acta. 1999; 1427:401–7.

    PubMed  CAS  Google Scholar 

  • Nicholls P. The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced alpha-peak. Biochim Biophys Acta. 1975:396:24–35.

    Article  PubMed  CAS  Google Scholar 

  • Pond W, Houpt K. The biology of the pig. lthaca: Cornell University Press; 1978:13–64.

    Google Scholar 

  • Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol. 1997; 78:219–43.

    Article  PubMed  CAS  Google Scholar 

  • Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the coionic mucosa in man. Gut. 1980:21:793–8.

    PubMed  CAS  Google Scholar 

  • Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982:83:424–9.

    PubMed  CAS  Google Scholar 

  • Roediger WE, Babidge W. Human colonocyte detoxification. Gut. 1997:41:731–4.

    Article  PubMed  CAS  Google Scholar 

  • Roediger WE, Duncan A, Kapaniris O, Millard S. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 1993; 104:802–9.

    PubMed  CAS  Google Scholar 

  • Roediger WE, Moore J, Babidge W. Coionic sulfide in patho-genesis and treatment of ulcerative colitis. Dig Dis Sci. 1997:42:1571–9.

    Article  PubMed  CAS  Google Scholar 

  • Sesink AL, Termont DS, Kleibeuker JH, Van der Meer R. Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 1999:59:5704–9.

    PubMed  CAS  Google Scholar 

  • Setchell KD, Lawson AM, Tanida N, Sjovall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1983:24:1085–100.

    PubMed  CAS  Google Scholar 

  • Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apopto-sis: a mechanism for small cell lung cancer growth and drug resistance invivo. Nat Med. 1999:5:662–8.

    Article  PubMed  CAS  Google Scholar 

  • Shao RG, Shimizu T, Pommier Y. 7-Hydroxystaurosporine (UCN-OI) induces apoptosis in human colon carcinoma and leukemia cells independently of p53. Exp Cell Res. 1997:234:388–97.

    Article  PubMed  CAS  Google Scholar 

  • Strater J, Wedding U, Barth TF, Koretz K, Elsing C, Moller P. Rapid onset of apoptosis in vitro follows disruption of beta I-integrin/matrix interactions in human coionic crypt cellls. Gastroenterology. 1996:110:1776–84.

    Article  PubMed  CAS  Google Scholar 

  • Suarez F, Fume J, Springfield J, Levitt M. Production and elimination of sulfur-containing gases in the rat colon. Am JPhysiol. 1998;274:G727–33.

    CAS  Google Scholar 

  • Van der Meer R, Termont DS, DeVries HT. Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids. Am J Physiol. 1991;260:G142–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leschelle, X., Robert, V., Delpal, S. et al. Isolation of pig colonic crypts for cytotoxic assay of luminal compounds: Effects of hydrogen sulfide, ammonia, and deoxycholic acid. Cell Biol Toxicol 18, 193–203 (2002). https://doi.org/10.1023/A:1015515821390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015515821390

Navigation