Skip to main content

Rapid Evaluation of Intestinal Paracellular Permeability Using the Human Enterocytic-Like Caco-2/TC7 Cell Line

  • Protocol
  • First Online:
Permeability Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2367))

Abstract

Paracellular permeability of the intestinal epithelium is a feature of the intestinal barrier, which plays an important role in the physiology of gut and the whole organism. Intestinal paracellular permeability is controlled by complex processes and is involved in the passage of ions and fluids (called pore pathway) and macromolecules (called leak pathway) through tight junctions, which seal the intercellular space. Impairment of intestinal paracellular permeability is associated with several diseases. The identification of a defect in intestinal paracellular permeability may help to understand the implication of gut barrier as a cause or a consequence in human pathology. Here we describe two complementary methods to evaluate alteration of paracellular permeability in cell culture, using the human intestinal cell line Caco-2 and its clone Caco-2/TC7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58(2):390–400. https://doi.org/10.1083/jcb.58.2.390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frömter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235(53):9–13. https://doi.org/10.1038/newbio235009a0

    Article  PubMed  Google Scholar 

  3. Machen TE, Erlij D, Wooding FB (1972) Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol 54(2):302–312. https://doi.org/10.1083/jcb.54.2.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124(1):3–20; quiz 21-22. https://doi.org/10.1016/j.jaci.2009.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee JY, Wasinger VC, Yau YY, Chuang E, Yajnik V, Leong RW (2018) Molecular pathophysiology of epithelial barrier dysfunction in inflammatory bowel diseases. Proteomes 6(2):17. https://doi.org/10.3390/proteomes6020017

    Article  CAS  PubMed Central  Google Scholar 

  6. Suzuki T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70(4):631–659. https://doi.org/10.1007/s00018-012-1070-x

    Article  CAS  PubMed  Google Scholar 

  7. Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J (2019) Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 77(3):129–143. https://doi.org/10.1093/nutrit/nuy064

    Article  PubMed  Google Scholar 

  8. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809. https://doi.org/10.1038/nri2653

    Article  CAS  PubMed  Google Scholar 

  9. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309. https://doi.org/10.1146/annurev-physiol-012110-142150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59(1):221–226. https://doi.org/10.1093/jnci/59.1.221

    Article  CAS  PubMed  Google Scholar 

  11. Pinto M, Robine-Leon S, Appay M-D, Kedinger M, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 47:323–330

    Google Scholar 

  12. Hauri HP, Sterchi EE, Bienz D, Fransen JA, Marxer A (1985) Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol 101(3):838–851. https://doi.org/10.1083/jcb.101.3.838

    Article  CAS  PubMed  Google Scholar 

  13. Zweibaum A, Triadou N, Kedinger M, Augeron C, Robine-Léon S, Pinto M, Rousset M, Haffen K (1983) Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int J Cancer 32(4):407–412. https://doi.org/10.1002/ijc.2910320403

    Article  CAS  PubMed  Google Scholar 

  14. Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, Read MN, Valtchev P, Khademhosseini A, Dehghani F (2019) Models of the gut for analyzing the impact of food and drugs. Adv Healthc Mater 8(21):1900968. https://doi.org/10.1002/adhm.201900968

    Article  CAS  Google Scholar 

  15. Zweibaum A, Laburthe M, Grasset E, Louvard D (1991) Use of cultured cell lines in studies of intestinal cell differentiation and function. In: Intestinal absorption and secretion: handbook of physiology, section 6, the gastrointestinal system. American Physiological Society, Bethesda, pp 223–255

    Google Scholar 

  16. Herrera-Ruiz D, Wang Q, Cook TJ, Knipp GT, Gudmundsson OS, Smith RL, Faria TN (2001) Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture model, and multiple human tissues. AAPS PharmSci 3(1):100. https://doi.org/10.1208/ps030109

    Article  PubMed Central  Google Scholar 

  17. Jung D, Fried M, Kullak-Ublick GA (2002) Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor α. J Biol Chem 277(34):30559–30566. https://doi.org/10.1074/jbc.M203511200

    Article  CAS  PubMed  Google Scholar 

  18. Artursson P, Magnusson C (1990) Epithelial transport of drugs in cell culture. II: effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J Pharm Sci 79(7):595–600. https://doi.org/10.1002/jps.2600790710

    Article  CAS  PubMed  Google Scholar 

  19. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3):736–749

    Article  CAS  PubMed  Google Scholar 

  20. Chantret I, Rodolosse A, Barbat A, Dussaulx E, Brot-Laroche E, Zweibaum A, Rousset M (1994) Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation. J Cell Sci 107(Pt 1):213–225

    Article  CAS  PubMed  Google Scholar 

  21. Zucco F, Batto A-F, Bises G, Chambaz J, Chiusolo A, Consalvo R, Cross H, Dal Negro G, de Angelis I, Fabre G, Guillou F, Hoffman S, Laplanche L, Morel E, Pinçon-Raymond M, Prieto P, Turco L, Ranaldi G, Rousset M, Sambuy Y, Scarino ML, Torreilles F, Stammati A (2005) An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. Altern Lab Anim 33(6):603–618. https://doi.org/10.1177/026119290503300618

    Article  CAS  PubMed  Google Scholar 

  22. Aguanno D, Coquant G, Postal BG, Osinski C, Wieckowski M, Stockholm D, Grill JP, Carrière V, Seksik P, Thenet S (2020) The intestinal quorum sensing 3-oxo-C12:2 acyl homoserine lactone limits cytokine-induced tight junction disruption. Tissue Barriers 8(4):1832877. https://doi.org/10.1080/21688370.2020.1832877

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghezzal S, Postal BG, Quevrain E, Brot L, Seksik P, Leturque A, Thenet S, Carriere V (2020) Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158530. https://doi.org/10.1016/j.bbalip.2019.158530

    Article  CAS  PubMed  Google Scholar 

  24. Petit CS, Barreau F, Besnier L, Gandille P, Riveau B, Chateau D, Roy M, Berrebi D, Svrcek M, Cardot P, Rousset M, Clair C, Thenet S (2012) Requirement of cellular prion protein for intestinal barrier function and mislocalization in patients with inflammatory bowel disease. Gastroenterology 143(1):122–132.e15. https://doi.org/10.1053/j.gastro.2012.03.029

    Article  CAS  PubMed  Google Scholar 

  25. Postal BG, Ghezzal S, Aguanno D, André S, Garbin K, Genser L, Brot-Laroche E, Poitou C, Soula H, Leturque A, Clément K, Carrière V (2020) AhR activation defends gut barrier integrity against damage occurring in obesity. Mol Metab 39:101007. https://doi.org/10.1016/j.molmet.2020.101007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20(2):107–126. https://doi.org/10.1177/2211068214561025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beaslas O, Cueille C, Delers F, Chateau D, Chambaz J, Rousset M, Carriere V (2009) Sensing of dietary lipids by enterocytes: a new role for SR-BI/CLA-1. PLoS One 4(1):e4278

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morel E, Ghezzal S, Lucchi G, Truntzer C, Pais de Barros JP, Simon-Plas F, Demignot S, Mineo C, Shaul PW, Leturque A, Rousset M, Carriere V (2018) Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells. Biochim Biophys Acta 1863(2):199–211. https://doi.org/10.1016/j.bbalip.2017.11.009

    Article  CAS  Google Scholar 

  29. Srinivasan B, Kolli AR (2019) Transepithelial/transendothelial electrical resistance (TEER) to measure the integrity of blood-brain barrier. In: Barichello T (ed) Blood-brain barrier. Springer New York, New York, NY, pp 99–114

    Chapter  Google Scholar 

  30. Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T (2011) Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 300(6):G1054–G1064. https://doi.org/10.1152/ajpgi.00055.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Genser L, Aguanno D, Soula HA, Dong L, Trystram L, Assmann K, Salem JE, Vaillant JC, Oppert JM, Laugerette F, Michalski MC, Wind P, Rousset M, Brot-Laroche E, Leturque A, Clément K, Thenet S, Poitou C (2018) Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol 246(2):217–230. https://doi.org/10.1002/path.5134

    Article  CAS  PubMed  Google Scholar 

  32. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171(6):939–945. https://doi.org/10.1083/jcb.200510043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tria S, Jimison LH, Hama A, Bongo M, Owens RM (2013) Sensing of EGTA mediated barrier tissue disruption with an organic transistor. Biosensors 3(1):44–57. https://doi.org/10.3390/bios3010044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166(2):409–419. https://doi.org/10.1016/s0002-9440(10)62264-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by: the Brazilian government’s Science Without Borders Program, the Association François Aupetit (AFA), Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Ecole Pratique des Hautes Etudes. B.G.P. received a doctoral fellowship (CNPq 207303/2014-2). D.A. received a fellowship from CORDDIM Ile de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Carrière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Postal, B.G., Aguanno, D., Thenet, S., Carrière, V. (2021). Rapid Evaluation of Intestinal Paracellular Permeability Using the Human Enterocytic-Like Caco-2/TC7 Cell Line. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2021_366

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_366

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1672-7

  • Online ISBN: 978-1-0716-1673-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics