Skip to main content
Log in

Effect of myocardial stunning on thiol status, myofibrillar ATPase and troponin I proteolysis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E: Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79: 950–961, 1987

    Google Scholar 

  2. Carrozza JP Jr, Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan JP: Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 71: 1334–1340, 1992

    Google Scholar 

  3. Hofmann PA, Miller WP, Moss RL: Altered calcium sensitivity of isometric tension in myocyte-sized preparations of porcine post ischemic stunned myocardium. Circ Res 72: 50–56, 1993

    Google Scholar 

  4. Gao WD, Atar D, Backx PH, Marban E: Relationship between intracellular calcium and contractile force in stunned myocardium. Direct evidence for decreased myofilament Ca2+ responsiveness and altered diastolic function in intact ventricular muscle. Circ Res 76: 1036–1048, 1995

    Google Scholar 

  5. Gao WD, Liu Y, Mellgren R, Marban E: Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. A consequence of Ca2+-dependent proteolysis? Circ Res 78: 455–465, 1996

    Google Scholar 

  6. Bezstarosti K, Soei LK, Verdouw PD, Lamers JMJ: Phoshorylation by protein kinase C and the responsiveness of Mg2+-ATPase to Ca2+ of myofibrils isolated from stunned and non-stunned porcine myocardium. Mol Cell Biochem 176: 211–218, 1997

    Google Scholar 

  7. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E: Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 80: 393–399, 1997

    Google Scholar 

  8. Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RJ: Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts. Identification of degradation products and effects on the pCa-force relation. Circ Res 82: 261–271, 1998

    Google Scholar 

  9. McDonough JL, Arrell DK, Van Eyk JE: Troponin I degradation and covalet complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 84: 9–20, 1999

    Google Scholar 

  10. Kristof E, Szigeti G, Papp Z, Bodi A, Ball NA, Walsh RA, Edes I: The effects of levosimendan on the left ventricular function and protein phosphorylation in post-ischemic guinea pig hearts. Basic Res Cardiol 94: 223–230, 1999

    Google Scholar 

  11. Gorza L, Menabo R, Vitadello M, Bergamini CM, Di Lisa F: Cardiomyocyte troponin T immunoreactivity is modified by cross-linking resulting from intracellular calcium overload. Circulation 93: 1896–1904, 1996

    Google Scholar 

  12. Bolli R, Marbán E: Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79: 609–634, 1999

    Google Scholar 

  13. Foster DB, Van Eyk JE: In search of the proteins that cause myocardial stunning. Circ Res 85: 470–472, 1999

    Google Scholar 

  14. Matejovicova M, Kaplan P, Mubagwa K, Raeymaekers L, Pongo E, Flameng W: Phosphorylation by protein kinases A and C of myofibrillar proteins in rabbit stunned and non-stunned myocardium. J Mol Cell Cardiol 29: 3189–3202, 1997

    Google Scholar 

  15. Barbato R, Menabo R, Dainese P, Carafoli E, Schiaffino S, Di Lisa F: Binding of cytosolic proteins to myofibrils in ischemic rat hearts. Circ Res 78: 821–828, 1996

    Google Scholar 

  16. Lüss H, Bokník P, Heusch G, Müller FU, Neumann J, Schmitz W, Schulz R: Expression of calcium regulatory proteins in short-term hibernation and stunning in the in situ porcine heart. Cardiovasc Res 37: 606–617, 1998

    Google Scholar 

  17. Thomas SA, Fallavolitta JA, Lee T-C, Feng J, Canty JM Jr: Absence of troponin I degradation or altered sarcoplasmic reticulum uptake protein expression after reversible ischemia in swine. Circ Res 85: 446–456, 1999

    Google Scholar 

  18. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R: Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation. 72: 915–921, 1985

    Google Scholar 

  19. Gross GJ, Farber NE, Hardmann HF, Warltier DC: Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol. 250: H372–377, 1986

    Google Scholar 

  20. Przyklenk K, Kloner RA: Superoxide dismutase plus catalase improve contractile function in the canine model of the ‘stunned’ myocardium. Circ Res 58: 148–156, 1986

    Google Scholar 

  21. Zweier JL, Flaherty JT, Weisfeldt ML: Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84: 1404–1407, 1987

    Google Scholar 

  22. Singal PK, Khaper N, Palace V, Kumar D: The role of oxidative stress in the genesis of the heart disease. Cardiovasc Res 40: 426–432, 1998

    Google Scholar 

  23. Dhalla NS, Golfman L, Takeda S, Takeda N, Nagano M: Evidence for the role of oxidative stress in acute ischemic heart disease: A brief review. Can J Cardiol 15: 587–593, 1999

    Google Scholar 

  24. Lefer DJ, Granger DN: Oxidative stress and cardiac disease. Am J Med 109: 315–323, 2000

    Google Scholar 

  25. Gao WD, Liu Y, Marban E: Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation 94: 2597–2604, 1996

    Google Scholar 

  26. Ishida H, Genka C, Hirota Y, Hamasaki Y, Nakazawa H: Distinct roles of peroxynitrite and hydroxyl radical in triggering stunned myocardium-like impairment of cardiac myocytes in vitro. Mol Cell Biochem 198: 31–38, 1999

    Google Scholar 

  27. Suzuki S, Kaneko M, Chapman DC, Dhalla NS: Alterations in cardiac contractile proteins due to oxygen free radicals. Biochim Biophys Acta 1074: 95–100, 1991

    Google Scholar 

  28. Liu X, Engelman RM, Rousou JA, Cordis GA, Das DK: Attenuation of myocardial reperfusion injury by sulfhydryl-containing angiotensin converting enzyme inhibitors. Cardivasc Drugs Ther 6: 437–443, 1992

    Google Scholar 

  29. Yanagishita T, Tomita M, Itoh S, Mukae S, Arata H, Ishioka H, Geshi E, Konno N, Katagiri T: Protective effect of captopril on ischemic myocardium. Jpn Circ J 61: 161–169, 1997

    Google Scholar 

  30. Lesnefsky EJ, Dauber IM, Horwitz LD: Myocardial sulfhydryl pool alterations occur during reperfusion after brief and prolonged myocardial ischemia in vivo. Circ Res 68: 605–613, 1991

    Google Scholar 

  31. Rigobello MP, Bindoli A: Effect of pyruvate on rat heart thiol status during ischemia and hypoxia followed by reperfusion. Mol Cell Biochem 122: 93–100, 1993

    Google Scholar 

  32. Ceconi C, Bernocchi P, Boraso A, Cargnoni A, Pepi P, Curello S, Ferrari R: New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage. Cardiovasc Res 47: 586–594, 2000

    Google Scholar 

  33. Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flemeng W: Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res 71: 1123–1130, 1992

    Google Scholar 

  34. Rapundalo ST, Solaro RJ, Kranias EG: Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: Comparison of cyclic AMP levels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins. Circ Res 64: 104–111, 1989

    Google Scholar 

  35. Bradford MM: Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254, 1976

    Google Scholar 

  36. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    Google Scholar 

  37. Jocelyn PC: Spectrophotometric assay of thiols. Methods Enzymol 143: 44–67, 1987

    Google Scholar 

  38. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA: An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100: 95–97, 1979

    Google Scholar 

  39. Feng J, Schaus BJ, Fallavollita JA, Lee TC, Canty JM Jr: Preload induces troponin I degradation independently of myocardial ischemia. Circulation 103: 2035–2037, 2001

    Google Scholar 

  40. Kim S-J, Kudej RK, Yatani A, Kim Y-K, Takagi G, Honda R, Colantonio DA, Van Eyk JE, Vatner DE, Rasmusson RL, Vatner SF: A novel mechanism for myocardial stunning involving impaired Ca2+ handling. Circ Res 89: 831–837, 2001

    Google Scholar 

  41. Di Lisa F, De Tullio R, Salamino F, Barbato R, Melloni E, Siliprandi N, Schiaffino S, Pontremoli S: Specific degradation of troponin T and I by µ-calpain and its modulation by substrate phosphorylation. Biochem J 308: 57–61, 1995

    Google Scholar 

  42. Kaneko M, Masuda H, Suzuki H, Matsumoto Y, Kobayashi A, Yamazaki N: Modification of contractile proteins by oxygen free radicals in rat heart. Mol Cell Biochem 125: 163–169, 1993

    Google Scholar 

  43. Powell SR, Gurzenda EM, Wahezi SE: Actin is oxidized during myocardial ischemia. Free Radic Biol Med 30: 1171–1176, 2001

    Google Scholar 

  44. Krause SM: Efect of global myocardial stunning on Ca2+-sensitive myofibrillar ATPase activity and creatine kinase kinetics. Am J Physiol 259: H813–H819, 1990

    Google Scholar 

  45. Westfall MV, Solaro RJ: Alterations in myofibrillar function and protein profiles after complete global ischemia in rat hearts. Circ Res 70: 302–313, 1992

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplán, P., Matejovicová, M., Lehotský, J. et al. Effect of myocardial stunning on thiol status, myofibrillar ATPase and troponin I proteolysis. Mol Cell Biochem 233, 145–152 (2002). https://doi.org/10.1023/A:1015514614183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015514614183

Navigation