Skip to main content
Log in

The influence of electrode morphology on the performance of a DMFC anode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

For low concentrations of methanol, mass transfer in the electrode is a limiting parameter for the direct methanol fuel cell (DMFC). To improve mass transfer, it is possible to induce convection in the gas backing layer or even in the porous electrode. In this study electrodes with different amounts of PTFE were compared to observe the influence of morphology on the anode performance. The hypothesis was that adding PTFE to the anode may make the morphology more favourable for carbon dioxide to evolve as a gas by creating the necessary pore sizes. Electrode performance was characterized electrochemically and the anode layer structure was studied using SEM, Hg-porosimetry and the van der Pauw method for measuring electric conductivity. Pores smaller than 0.04 μm were unaffected by adding PTFE while the volume fraction of pores of 0.04–1.0 μm diameter increased. Electrodes with 50% PTFE also performed as nonhydrophobized, despite the much higher ohmic losses and thickness. This implies that, above a certain amount, adding PTFE has a positive effect and that optimizing the electrode with PTFE may give better performance than electrodes without PTFE. The results suggest that gas evolves within the electrode, giving improved mass transfer in the liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Argyropoulos, K. Scott and W.M. Taama, J. Appl. Electrochem. 29 (1999) 661.

    Google Scholar 

  2. K. Sundmacher and K. Scott, Chem. Eng. Sci. 54 (1999) 2927.

    Google Scholar 

  3. P. Argyropoulos, K. Scott and W.M. Taama, Electrochim. Acta 44 (1999) 3575.

    Google Scholar 

  4. J. Nordlund and G. Lindbergh, submitted to J. Electrochem. Soc.

  5. K. Scott, W.M. Taama and P. Argyropoulos, J. Appl. Electrochem. 28 (1998) 1389.

    Google Scholar 

  6. J. Kamath and R.E. Boyer, 68th Annual Technical Conference and Exhibition of the SPE, Houston, TX, 3–6 Oct. 1993.

  7. Y.C. Yortos and M. Parlar, 64th Annual Technical Conference and Exhibition of the SPE, San Antonio, TX, 8–11 Oct. 1990.

  8. R.B. Dean, J. Appl. Phys. 15 (1944) 446.

    Google Scholar 

  9. P.M. Wilt, J. Colloid Interface Sci. 112 (1986) 530.

    Google Scholar 

  10. N. Ibl, E. Adam, J. Venczel and E. Schalch, Chem. Ing. Tech. 43 (1971) 202.

    Google Scholar 

  11. J. Venczel, Ñber den Sto.transport an gasentwickelnden Elektroden, Diss. ETH, Zürich (1961).

  12. N. Ibl and J. Venczel, Metalloberäche 24 (1970) 365.

    Google Scholar 

  13. N. Ibl, Chem. Ing. Tech. 35 (1963) 353.

    Google Scholar 

  14. I. Rousar and V. Cezner, Electrochim. Acta 20 (1975) 289.

    Google Scholar 

  15. L.J.J. Janssen and S.J.D. van Stralen, Electrochim. Acta 26 (1981) 1011.

    Google Scholar 

  16. H. Vogt, Ein Beitrag zum Stoffübergang an gasentwickelnden Elektroden, Diss. University of Stuttgart (1977).

  17. K. Stephan and H. Vogt, Electrochim. Acta 24 (1979) 11.

    Google Scholar 

  18. L.J.J. Janssen and J.G. Hoogland, Electrochim. Acta 18 (1973) 543.

    Google Scholar 

  19. L.J.J. Janssen and J.G. Hoogland, Electrochim. Acta 15 (1970) 1013.

    Google Scholar 

  20. L.J.J. Janssen and E. Barendrecht, Electrochim. Acta 24 (1979)693.

    Google Scholar 

  21. N.G. McDuffe, Chem. Eng. Sci. 54 (1999) 1155.

    Google Scholar 

  22. M.S. Wilson and S. Gottesfeld, J. Appl. Electrochem. 32 (1992) 1.

    Google Scholar 

  23. M.S. Wilson, J.A. Valerio and S. Gottesfeld, Electrochim. Acta 40 (1995) 355.

    Google Scholar 

  24. J. Ihonen, F. Jaouen, G. Lindbergh and G. Sundholm, Electrochim.Acta 46 (2001) 2899.

    Google Scholar 

  25. L.J. van der Pauw, Philips Res. Reports 13 (1958) 1.

    Google Scholar 

  26. A. Fischer, J. Jindera and H. Wendt, J. Appl. Electrochem. 28 (1998) 277.

    Google Scholar 

  27. M. Schulze, M. von Bradke, R. Reissner, M. Lorenz and E. Gülzow, Fresen. J. Anal. Chem. 365 (1999) 123.

    Google Scholar 

  28. R. Holze and A. Maas, J. Appl. Electrochem. 13 (1983) 549.

    Google Scholar 

  29. M. Watanabe, M. Tomikawa and S. Motoo, J. Electroanal. Chem. 195 (1985) 81.

    Google Scholar 

  30. M. Watanabe, K. Makita, H. Usami and S. Motoo, J. Electroanal.Chem. 197 (1986) 195.

    Google Scholar 

  31. M. Uchida, Y. Aoyama, N. Eda and A. Ohta, J. Electrochem. Soc. 142 (1995) 4143.

    Google Scholar 

  32. C. Jho, D. Nealon, S. Shogbola and A.D. King Jr, J. Colloid Interface Sci. 65 (1978) 141.

    Google Scholar 

  33. Y.G. Chirkov and A.G. Pshenichnikov, Soviet Electrochem. 26 (1990) 1379.

    Google Scholar 

  34. Y. Kiros and S. Schwartz, J. Power Sources 87 (2000) 101.

    Google Scholar 

  35. Solubility data series, Vol. 62, IUPAC, Oxford, GB (1996).

  36. Landolt–Börnstein, New Series IV/16, p. 311, Springer, Germany (1997).

  37. Landolt–Börnstein, New Series IV/16, p. 18, Springer, Germany (1997).

  38. Landolt–Börnstein, New Series IV/16, p. 52, Springer, Germany (1997).

  39. R.H. Perry, D.W. Green, 'Perry's Chemical Engineers Handbook' 7th edn., p. 2–373.

  40. S.D. Lubetkin and M. Akhtar, J. Colloid Interface Sci. 180 (1996)43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordlund, J., Roessler, A. & Lindbergh, G. The influence of electrode morphology on the performance of a DMFC anode. Journal of Applied Electrochemistry 32, 259–265 (2002). https://doi.org/10.1023/A:1015501628366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015501628366

Navigation