Skip to main content
Log in

Ganglioside Alterations in the Central Nervous System of Rats Chronically Injected with Methylmalonic and Propionic Acids

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Neurological dysfunction and structural cerebral abnormalities are commonly found in patients with methylmalonic and propionic acidemia. However, the mechanisms underlying the neuropathology of these disorders are poorly understood. We have previously demonstrated that methylmalonic and propionic acids induce a significant reduction of ganglioside N-acetylneuraminic acid in the brain of rats subjected to chronic administration of these metabolites. In the present study, we investigated the in vivo effects of chronic administration of methylmalonic (MMA) and propionic (PA) acids (from the 6th to the 28th day of life) on the distribution and composition of gangliosides in the cerebellum and cerebral cortex of rats. Control rats were treated with the same volumes of saline. It was first verified that MMA and PA treatment did not modify body, cerebellum, or cortical weight, nor the ganglioside concentration in the cerebral cortex of the animals. In contrast, a significant reduction in total ganglioside content in the cerebellum of approximately 20–30% and 50% of control levels occurred in rats injected with MMA and PA, respectively. Moreover, chronic MMA and PA administration did not interfere with the ganglioside pattern in the cerebral cortex, whereas the distribution of individual gangliosides was altered in the cerebellum of MMA- and PA-treated animals. Rats injected with MMA demonstrated a marked decrease in GM1 and GD3, whereas chronic PA treatment provoked a significant reduction of all ganglioside species, with the exception of an increase in GM2. Since gangliosides are closely related to the dendritic surface and other neural membranes, indirectly reflecting synaptogenesis, these ganglioside abnormalities may be associated with the brain damage found in methylmalonic and propionic acidemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ando, S. (1983). Gangliosides in the nervous system. Neurochem. Int. 5:507–537.

    Google Scholar 

  • Bergman, A.I.W., van der Knapp, M.S., Smeitink, A.M., Duran, M., Dorland, L., Valk, J., and Poll, B.T. (1996). Magnetic resonance imaging and spectroscopy of brain in propionic acidemia: Clinical and biochemical consideration. Pediatr. Res. 40:404–409.

    Google Scholar 

  • Brismar, J., and Ozand, P.T. (1994). MR of the brain in disorders of propionate and methylmalonate metabolism. Am. J. Neuroradiol. 15:1459–1473.

    Google Scholar 

  • Brusque, A.M., Malfussi, H.F.C., Rocha, M.P., Dutra-Filho, C.S., Wanmacher, C.M.D., and Wajner, M. (1997). Propionic acid inhibits in vitro CO2 production in cerebellum and cerebral cortex of suckling rats. Med. Sci. Res. 25:347–349.

    Google Scholar 

  • Brusque, A.M., Rotta, L., Pettenezzo, L.F., Junqueira, D., Schwarzbold, C., Wyse, A.T., Wannmacher, C.M.D., Dutra-Filho, C.S., and Wajner, M. Chronic postnatal administration of methylmalonic acid provokes a decrease of myelin content and ganglioside N-acetylneuraminic acid concentration in cerebrum of young rats. (2001). Braz. J. Biol. Res. 34:227–231.

    Google Scholar 

  • Brusque, A.M., Terraciano, S.T., Fontella, F.U., Vargas, C., da Silva, C.G., Wyse, A.T., Trindade, V.M.T., Wannmacher, C.M.D., and Wajner,M. (1998). Chronic administration of propionic acid reduces ganglioside N-acetylneuraminic acid concentration in cerebellum of young rats. J. Neurol. Sci. 158:121–124.

    Google Scholar 

  • De Souza, C., Piesowicz, A.T., Brett, E.M., and Leonard, J.V. (1989). Focal changes in the globi pallidi associated with neurological dysfunction in methylmalonic acidemia. Neuropediatrics 20:199–201.

    Google Scholar 

  • Dutra, J.C., Dutra-Filho, C.S., Cardozo, S.E., Wannmacher, C.M.D., Sarkis, J.J., and Wajner,M. (1993). Inhibition of succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase activities by methylmalonate in brain and liver of developing rats. J. Inher. Metab. Dis. 16:147–153.

    Google Scholar 

  • Dutra, J.C., Wajner, M., Wannmacher, C.M.D., Wannmacher, L.E., Pires, R.F., and Rosa-Junior, A. (1991). Effect of postnatal methylmalonate administration on adult rat behavior. Braz. J. Med. Biol. Res. 24:595–605.

    Google Scholar 

  • Farooqui, A.A., Liss, L., and Horrocks, L.A. (1988). Neurochemical aspects of Alzheimer's disease: Involvement of membrane phospholipids. Metab. Brain Dis. 3:19–35.

    Google Scholar 

  • Fenton,W.A., Gravel, R.A., and Rosenblat, D.S. (2001). Disorders of proprionate and methylmalonate metabolism. In (C.R. Scriver, A.L. Beaudet, W.S. Sky, and D. Valle, eds.), The metabolic and Molecular Bases of Inherited Disease, 8th edn., McGraw-Hill, New York, pp. 2165–2194.

    Google Scholar 

  • Ferrari, G., and Greene, L.A. (1998). Promotion of neuronal sruvival by GM1 ganglioside. Phenomenology and mechanisn of action. Ann NY Acad. Sci. 845:263–273.

    Google Scholar 

  • Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    Google Scholar 

  • Fredman, P. (1998). Sphingolipids and cell signalling. J. Inherit. Metab. Dis. 21:472–480.

    Google Scholar 

  • Gravel, R.A., Kaback, M.M., Proia, R.L., Sandhoff, K., Susuki, K., and Susuki, K. (2001). GM2 gangliosidoses. In (C.R. Scriver, A.L. Beaudet, W.S. Sky, and D. Valle, eds.), The Metabolic and Molecular Bases of Inherited Disease, 8th edn., McGraw-Hill, New York, pp. 3927–3876.

    Google Scholar 

  • Hayasaka K., Metoki K., Satoh T., Nakisawa K., Tada K., Kawakami, T., Matsuo, N., and Aoki, T. (1982). Comparison of cytosolic and mitochondrial enzyme alterations in the liver of propionic or methylmalonic acidemia: Are reduction of cytochrome oxidase activity. Tohoku J. Exp. Med. 137:329–334.

    Google Scholar 

  • Heidenreich, R., Natowicz, M., Hainline, B.E., Berman, P., Kelley, R.I., Hillman, R.E., and Berry, G.T. (1988). Acute extrapyramidal syndrome in methylmalonic acidemia: “Metabolic stroke” involving the globus pallidus. J. Pediatr. 113:1022–1027.

    Google Scholar 

  • Hilbig, R., Rösner, H., and Rahman, H. (1981). Phylogenetic recapitulation of brain ganglioside composition during ontogenetic development. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 68:301–305.

    Google Scholar 

  • Inokuchi, J., Kuroda,Y., Kosaka, S., and Fujiwara, M. (1998). L-Threo-1–phenyl-2–decanoylamino-3–morpholino-1–propanol stimulates ganglioside biosynthesis, neurite outgrowth and synapse formation in cultured cortical neurons, and ameliorates memory deficits in ischemic rats. Acta Biochim. Pol. 45:479–492.

    Google Scholar 

  • Krahenbuhl, S., Chang, M., Bras, E.P., and Hoppel, C.L. (1991). Decreased activities of ubiquinol: ferricytochrome c oxidoredutase (Complex III) and ferrocytochrome c: oxygen oxidoreductase (Complex IV) in liver mitocondrial from rats with hydroxycobalamin [c-lactam]-induced methylmalonic aciduria. J. Biol. Chem. 266:20998–21003.

    Google Scholar 

  • Lehnert, W., Sperl, W., Suormala, T., and Baumgarther, E.R. (1994). Propionic acidemia: Clinical biochemical and therapeutic aspects. Eur. J. Pediatr. 153(Suppl. 1):S68–S80.

    Google Scholar 

  • Manson, R.P., Shoemaker, W.J., Shajenko, L., Chambers, T.E., and Herbette, L.G. (1992). Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol. Neurobiol. Aging 13:413–419.

    Google Scholar 

  • Matsuishi, T., Stumpf, D.A., Seliem, M., Eguren, L.A., and Chrislip, K. (1991). Proprionate mitochondrial toxicity in liver and skeletal muscle: Acyl Coa levels. Biochem. Med. Metab. Biol. 45:244–253.

    Google Scholar 

  • Miettinen, T., and Takki-Luukkainem, I.T. (1959). Use of butyl acetate in determination of sialic acid. Acta Chem. Scand. 13:856–858.

    Google Scholar 

  • Morgan, B.L.G., and Winick, M. (1980). Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behaviour. J. Nutr. 110:416–424.

    Google Scholar 

  • Nores, G.A., Mitzumari, R.K., and Kremer, D.M. (1994). Chromatographic tank designed to obtain highly reprotucible high-performance thin-layer chromatograms of gangliosides and neutral glycosphingolipds. J. Chromatogr. A 686:155–157.

    Google Scholar 

  • Ogier, H., Charpentier, C., and Saudubray, J.H. (2000). Organic acidemia. In (J. Fernandes, J.M. Saudubray, and G. Van Der Berghe, eds.), Inborn Metabolic Diseases, 1st edn., Springer, Berlin, pp. 271–299.

    Google Scholar 

  • Ohtani, Y., Tamai, Y., Ohnuki, Y., and Miura, S. (1996). Ganglioside alterations in the central and peripheral nervous system of patients with Creutzfeldt-Jakob disease. Neurodegeneration 5:331–338.

    Google Scholar 

  • Qi, Y., and Xue, Q.-M. (1991). Ganglioside levels in hipoxic brains from neonatal and premature infants. Mol. Chem. Neuropathol. 14:87–97.

    Google Scholar 

  • Rahmann, H. (1995). Brain gangliosides and memory formation. Behav. Brain Res. 66:105–116.

    Google Scholar 

  • Roodhooft, A.M., Baumgarther, E.R., Martin, J.J., Blom, W., and Van Acker, K.J. (1990). Symmetrical necrosis of the basal ganglia in methylmalonic acidaemia. Eur. J. Pediatr. 149:582–584.

    Google Scholar 

  • Rösner, H., Al-aqtum, M., and Rahmann, H. (1992). Gangliosides and neuronal diferentiation. Neurochem. Int. 20:339–351.

    Google Scholar 

  • Schneider, J.S. (1994). The therapeutic role of gangliosides in neurological disorders. CNS Drugs 1:213–222.

    Google Scholar 

  • Schneider, J.S., Roeltgen, D.P., Mancall, E.L., Chapas-Crilly, J., Rothblat, D.S., and Tatarian, G.T. (1998). Parkinson's disease: Improved function with GM1 ganglioside treatment in a randomized placebo-controlled study. Neurology 50:1630–1636.

    Google Scholar 

  • Sheikh, K.A., Sun, J.I., Liu, Y., Kawai, H., Crawford, T.O., Proia, R.L., Griffin, J.W., and Schnaar, R.L. (1999). Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc. Natl. Acad. Sci. USA 96:7532–7537.

    Google Scholar 

  • Skaper, S.D., Leon, A., and Toffano, G. (1989). Ganglioside function in the development and repair of the nervous system: From basic science to clinical application. Mol. Neurobiol. 3:173–199.

    Google Scholar 

  • Smith, I., and Seakin, S. (1976). Chromatographic and Eletrophoretic Techniques, Vol. 1, 4th edn., Wilian Heinemann Medical Books, pp. 354–356.

    Google Scholar 

  • Söderberg, M., Edlund, C., Kristensson, K., and Dallner, G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids 26:421–425.

    Google Scholar 

  • Svennerholm, L. (1957). Quantitaive estimation of sialic acids a colorimetric resorcinol-hydrochloric acid method. Bichim. Biophys. Acta 24:604–611.

    Google Scholar 

  • Svennerholm, L. (1963). Chromathographic separation of human brain gangliosides. J. Neurochem. 10:613–623.

    Google Scholar 

  • Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shing, M., Okada, M., Fukomoto, S., Haragushi, M., Takeda, N., Fujimura, K., Sakae, M., Kishikawa, M., Shiku, H., Furukawa, K., and Aizawa, S. (1996). Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc. Natl. Acad. Sci. USA 93:10662–10667.

    Google Scholar 

  • Thomas, P., and Brewer, G.J. (1990). Gangliosides and synaptic transmission. Biochim. Biophys. Acta 1031:277–289.

    Google Scholar 

  • Toyoshima, S., Watanabe, F., Saido, H., Miyatake, K., and Nakano, Y. (1995). Methylmalonic acid inhibits respiration in rat liver mitochondria. J. Nutr. 125:2846–2850.

    Google Scholar 

  • Trindade, V.M.T., Perry, M.L.S., and Bernard, E.A. (1992). Gangliosides and sialoproteins in hypothalamus of normal, postnatal, and pre-and postnatal protein undernourished rats. J. Neurol. Sci. 107:93–97.

    Google Scholar 

  • Trindade, V.M.T., Daniotti, J.L., Raimondi, L., Chazan, R., Netto, C.A., and Maccioni, H.J.F. (2001). Effects of neonatal hypoxia/ischemia on ganglioside expression in the rat hippocampus. Neurochem. Res. 26:591–597.

    Google Scholar 

  • Vyas, A.A., and Schnaar, R.L. (2001). Brain gangliosides: Functional ligands for myelin stability and the control of nerve regeneration. Biochimie 83:677–682.

    Google Scholar 

  • Vyas, K.A., Patel, H.V., Vyas, A.A., and Schnaar, R.L. (2001). Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membranes rafts, and defined supported lipid monolayers. Biol. Chem. Hoppe-Seyler 382:241–250.

    Google Scholar 

  • Wajner, M., Brites, E.C., Dutra, J.C., Buchalter, M.S., Pons, A.H., Pires, R.F., Wannmacher, L.E., Rosa Junior, A., Trindade, V.M.T., and Wannmacher, C.M.D. (1988). Diminished concentrations of ganglioside N-acetylneuraminic acid (G-NeuAc) in cerebellum of young rats receiving chronic administration of methylmalonic acid. J. Neurol. Sci. 85:233–238.

    Google Scholar 

  • Wajner, M., Dutra, J.C., Cardoso, S.E., Wannmacher, C.M.D., and Motta, E.R. (1992). Effect of methylmalonate on in vitro lactate release and carbon dioxide production by brain of suckling rats. J. Inher. Metab. Dis. 15:92–96.

    Google Scholar 

  • Wyse, A.T.S., Brusque, A.M., Silva, C.G., Streck, E.L., Wajner, M., and Wannmacher, C.M.D. (1998). Inhibition of Na+, K+-ATPase from rat brain cortex by proprionic acid. NeuroReport 9:1719–1721.

    Google Scholar 

  • Wyse, A.T.S., Streck, E.L., Barros, S.V.T., Brusque, A.M., Zugno, A.I., and Wajner, M. (2000). Methylmalonate administration decreases Na+, K+-ATPase activity in cerebral cortex of rats. NeuroReport 11:2331–2334.

    Google Scholar 

  • Yu, R.K., and Ledeen, R.W. (1974). Ganglioside abnormalities in multiple sclerosis. J. Neurochem. 23:169–174.

    Google Scholar 

  • Yusuf, H.K.M., and Dickerson, J.W.T. (1978). Content and composition of the gangliosides of forebrain, brain stem and cerebellum of the rat during normal and restricted growth. J. Biochem. 84:1501–1506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trindade, V., Brusque, A., Raasch, J. et al. Ganglioside Alterations in the Central Nervous System of Rats Chronically Injected with Methylmalonic and Propionic Acids. Metab Brain Dis 17, 93–102 (2002). https://doi.org/10.1023/A:1015464028616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015464028616

Navigation