Skip to main content
Log in

Development of an Extended Corresponding States Principle Method for Volumetric Property Predictions Based on a Lee–Kesler Reference Fluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The corresponding states principle (CSP) and the extended CSP have proven to be valuable tools in the prediction of properties of fluids and fluid mixtures. However, the accuracy of the application of these principles to property prediction is crucially dependent on the accuracy of the equation of state of the reference fluid or fluids involved. In this work, a new methodology of property prediction is developed and discussed. The revised extended corresponding states method, as developed by Marrucho and Ely, is combined with a reformulated (Teja-like) Lee–Kesler approach. The reformulated Lee–Kesler method is used to generate a pseudo-reference fluid, specific to each target fluid, which allows better mapping characteristics with any specified target fluid. This methodology is tested for the prediction of bulk volumetric properties of non-polar as well as polar fluids (specifically, alternative refrigerants). The results with different pseudo-reference fluids are compared with those of the original Lee–Kesler model and those obtained with n-propane as a single reference fluid. In the case of polar fluids, the prediction of properties is improved if the Taylor series expansion of the compressibility factor in the Lee–Kesler approach is affected in terms of the dipole moment rather than the acentric factor. The details of the combined “reformulated Lee–Kesler extended corresponding states” methodology are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. T. Jacobsen and R. B. Stewart, J. Phys. Chem. Ref. Data 2:757 (1973).

    Google Scholar 

  2. K. S. Pitzer, D. Z. Lippmann, R. F. Curl, Jr., C. M. Huggins, and D. E. Petersen, J. Am. Chem. Soc. 40:3433 (1955).

    Google Scholar 

  3. K. S. Pitzer, J. Am. Chem. Soc. 77:3427 (1955).

    Google Scholar 

  4. K. S. Pitzer, and R. F. Curl, Jr, J. Am. Chem. Soc. 79:2369 (1957).

    Google Scholar 

  5. B. I. Lee and M. G. Kesler, AIChE J. 21:510 (1975).

    Google Scholar 

  6. A. S. Teja and P. Rice, Chem. Eng. Sci. 36:1 (1981).

    Google Scholar 

  7. A. S. Teja, S.I. Sandler, and N. C. Patel, Chem. Eng. J. 21:21 (1981).

    Google Scholar 

  8. R. A. Mentzner, K. L. Young, R. A. Greenkorn, and K. C. Chao, Sep. Sci. Tech. 15:1613 (1980).

    Google Scholar 

  9. J. F. Ely, Adv. Cryo. Eng. 35:1520 (1990).

    Google Scholar 

  10. G. Z. A. Wu and L. I. Stiel, AIChE J. 31:1632 (1985).

    Google Scholar 

  11. W. V. Wilding, J. K. Johnson, and R. L. Rowley, Int. J. Thermophy. 8:717 (1987).

    Google Scholar 

  12. D. L. Morgan and R. Kobayashi, Fluid Phase Equil. 94:51 (1987).

    Google Scholar 

  13. M. Benedict, G. B. Webb and L. C. Rubin, J. Chem. Phys. 8:334 (1940).

    Google Scholar 

  14. R. V. Orye, I & EC Proc. Design & Develop. 8:579 (1969).

    Google Scholar 

  15. J. Nohka, E. Sarashina, Y. Arai, and S. Saito, J. Chem. Eng. Japan 6:10 (1973).

    Google Scholar 

  16. S. I. Stanley and H. Orbey, Equations of State for Fluids and Fluid Mixtures, Experimental Thermodynamics, Vol. 5 (Elsevier, Amsterdam, 2000).

    Google Scholar 

  17. P. S. Fialho and C. A. Nieto de Castro, Int. J. Thermophys. 21:385 (2000).

    Google Scholar 

  18. J. F. Ely and A. S. Cullick, J. Chem. Eng. Data 27:276 (1992).

    Google Scholar 

  19. A. A. Frost and D. R. Kalkwarf, J. Chem. Phys. 21(3):264 (1953).

    Google Scholar 

  20. H. G. Rackett, J. Chem. Eng. Data 15:514 (1970).

    Google Scholar 

  21. I. M. Marrucho, “Extended Corresponding States Theory: Application for Polar Compounds and Their Mixtures,” Ph.D. Thesis, Instituto Superior Técnico, Portugal (1996).

    Google Scholar 

  22. I. M. Marrucho and J. F. Ely, Fluid Phase Equil. 215:150 (1999).

    Google Scholar 

  23. James F. Ely and Isabel M. Marrucho, Equations of State for Fluids and Fluid Mixtures, Experimental Thermodynamics, Vol. 5 (Elsevier, Amsterdam, 2000).

    Google Scholar 

  24. J. Xu and D. R. Herschbach, J. Phys. Chem. 96: 2307 (1992).

    Google Scholar 

  25. E. Holleran, Ind. Eng. Chem. Res. 29:632 (1990).

    Google Scholar 

  26. G. Parsafar and E. A. Mason, J. Chem. Phys. 97:9048 (1993).

    Google Scholar 

  27. U. V. Mardolcar and C. A. Nieto de Castro, ”1st Workshop on Thermochemical, Thermophysical and Transport Properties of Halogenated Hydrocarbons and Mixtures,” Oral Communication, Pisa, 15–18 December, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai-Panandiker, R.S., Nieto de Castro, C.A., Marrucho, I.M. et al. Development of an Extended Corresponding States Principle Method for Volumetric Property Predictions Based on a Lee–Kesler Reference Fluid. International Journal of Thermophysics 23, 771–785 (2002). https://doi.org/10.1023/A:1015419607914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015419607914

Navigation