Skip to main content
Log in

Application of Extended Corresponding States (ECS) and Residual Entropy Scaling (RES) Techniques for Modeling Viscosity of cis-1,3,3,3-Tetrafluoropropene (R1234ze(Z)) with Revised Experimental Data

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper focuses on the empirical modeling for viscosities of a hydrofluoroolefin refrigerant, R1234ze(Z), which is considered an environmentally friendly alternative to hydrofluorocarbons. The refrigerant has favorable thermophysical properties and a low global warming potential. A new fundamental equation of state (EoS) for R1234ze(Z) was developed in 2019, which aligns with the recent trends of developing accurate fundamental equations of state. However, previously published experimental viscosity data were reported using an old equation of state of the fluid. In this paper, the revised experimental viscosity data based on the latest EoS has been reported for R1234ze(Z). Additionally, the viscosity model of this fluid is presented using the extended corresponding states (ECS) and modified fluid-specific residual entropy scaling (RES) techniques. By using the adjustable parameters, the ECS and the modified fluid-specific RES transport equations can represent the experimental data within reported uncertainties. The average absolute deviations (AAD) for viscosity were found to be 1.40% and 1.65% using the ECS and the RES method, respectively. This study also highlights the importance of using the most accurate EoS when reporting experimental data, especially when formulating transport property models based on these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable

References

  1. P. Petr, G. Raabe, Energy 93, 266 (2015). https://doi.org/10.1016/j.energy.2015.09.035

    Article  Google Scholar 

  2. Y. Kayukawa, K. Tanaka, Y. Kano, Y. Fujita, R. Akasaka, Y. Higashi, in International symposium on new refrigerants and environmental technology (2012)

  3. Y. Higashi, S. Hayasaka, C. Shirai, R. Akasaka, Int. J. Refrig. 52, 100 (2015)

    Article  Google Scholar 

  4. R. Akasaka, Y. Higashi, A. Miyara, S. Koyama, Int. J. Refrig. 44, 168 (2014)

    Article  Google Scholar 

  5. S. Fukuda, C. Kondou, N. Takata, S. Koyama, Int. J. Refrig. 40, 161 (2014). https://doi.org/10.1016/j.ijrefrig.2013.10.014

    Article  Google Scholar 

  6. C. Kondou, F. Mishima, J. Liu, S. Koyama, 15th International Refrigeration and Air Conditioning Conference, pp. 2013–2016 (2014)

  7. R. Nagata, C. Kondou, S. Koyama, Int. J. Refrig. 63, 157 (2016). https://doi.org/10.1016/j.ijrefrig.2015.11.002

    Article  Google Scholar 

  8. R. Nagata, C. Kondou, S. Koyama, Sci. Technol. Built Environ. 23, 923 (2017). https://doi.org/10.1080/23744731.2017.1325706

    Article  Google Scholar 

  9. R. Akasaka, E.W. Lemmon, J. Chem. Eng. Data 64, 4679 (2019). https://doi.org/10.1021/acs.jced.9b00007

    Article  Google Scholar 

  10. L. Fedele, G. Di Nicola, J.S. Brown, S. Bobbo, C. Zilio, Int. J. Thermophys. 35, 1 (2014)

    Article  ADS  Google Scholar 

  11. R. Romeo, P.G. Albo, S. Lago, J. Brown, Int. J. Refrig. 79, 176 (2017)

    Article  Google Scholar 

  12. S. Lago, P.G. Albo, J.S. Brown, Int. J. Refrig. 65, 55 (2016)

    Article  Google Scholar 

  13. N. Sakoda, J. Shiheng, M. Kohno, S. Koyama, Y. Higashi, Y. Takata, J. Chem. Eng. Data 62, 2178 (2017)

    Article  Google Scholar 

  14. D. Lozano-Martin, D.M. Ripa, R. Gavioso, Int. J. Refrig. 100, 37 (2019)

    Article  Google Scholar 

  15. M. Gong, Y. Zhao, X. Dong, H. Guo, J. Shen, J. Wu, J. Chem. Thermodyn. 98, 319 (2016)

    Article  Google Scholar 

  16. X. Zhang, X. Dong, H. Guo, M. Gong, J. Shen, J. Wu, J. Chem. Thermodyn. 103, 349 (2016)

    Article  Google Scholar 

  17. M.J. Alam, M.A. Islam, K. Kariya, A. Miyara, Int. J. Refrig. 131, 341 (2021). https://doi.org/10.1016/j.ijrefrig.2021.04.004

    Article  Google Scholar 

  18. M.J. Alam, A. Miyara, K. Kariya, K.K. Kontomaris, J. Chem. Eng. Data 63, 1706 (2018)

    Article  Google Scholar 

  19. E. Vogel, C. Kuechenmeister, E. Bich, A. Laesecke, J. Phys. Chem. Ref. Data 27, 947 (1998)

    Article  ADS  Google Scholar 

  20. T.H. Chung, M. Ajlan, L.L. Lee, K.E. Starling, Ind. Eng. Chem. Res. 27, 671 (1988)

    Article  Google Scholar 

  21. I.H. Bell, J. Chem. Eng. Data 65, 3203 (2020)

    Article  Google Scholar 

  22. M.L. Huber. Models for viscosity, thermal conductivity, and surface tension of selected pure fluids as implemented in refprop v10. 0 (2018)

  23. M. Morshed, K. Kariya, A. Miyara, Int. J. Refrig. (2023). https://doi.org/10.1016/j.ijrefrig.2023.03.017

    Article  Google Scholar 

  24. M.L. Huber, A. Laesecke, R.A. Perkins, Ind. Eng. Chem. Res. 42, 3163 (2003)

    Article  Google Scholar 

  25. Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977)

    Article  ADS  Google Scholar 

  26. W.G. Hoover, Mol. Dyn. 258, 1–10 (1986)

    Article  Google Scholar 

  27. N. Gnan, T.B. Schrøder, U.R. Pedersen, N.P. Bailey, J.C. Dyre, J. Chem. Phys. 131, 234504 (2009)

    Article  ADS  Google Scholar 

  28. Y. Rosenfeld, J. Phys. Condens. Matter 11, 5415 (1999)

    Article  ADS  Google Scholar 

  29. I.H. Bell, Proc. Natl. Acad. Sci. USA 116, 4070 (2019)

    Article  ADS  Google Scholar 

  30. I.H. Bell, R. Messerly, M. Thol, L. Costigliola, J.C. Dyre, J. Phys. Chem. B 123, 6345 (2019)

    Article  Google Scholar 

  31. I.H. Bell, J. Chem. Eng. Data 65, 5606 (2020)

    Article  Google Scholar 

  32. M. Hopp, J. Gross, Ind. Eng. Chem. Res. 56, 4527 (2017)

    Article  Google Scholar 

  33. M. Hopp, J. Mele, J. Gross, Ind. Eng. Chem. Res. 57, 12942 (2018)

    Article  Google Scholar 

  34. O. Lötgering-Lin, J. Gross, Ind. Eng. Chem. Res. 54, 7942 (2015)

    Article  Google Scholar 

  35. O. Lötgering-Lin, M. Fischer, M. Hopp, J. Gross, Ind. Eng. Chem. Res. 57, 4095 (2018)

    Article  Google Scholar 

  36. L.T. Novak, Int. J. Chem. React. Eng. 9, 1–10 (2011)

    Google Scholar 

  37. L. Novak, Int. J. Chem. React. Eng. 9, 1–10 (2011)

    Google Scholar 

  38. X. Yang, X. Xiao, E.F. May, I.H. Bell, J. Chem. Eng. Data 66, 1385 (2021)

    Article  Google Scholar 

  39. R. Tillner-Roth, H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)

    Article  ADS  Google Scholar 

  40. M.J. Powell, Numerical methods for nonlinear algebraic equations, pp. 87–161 (1970)

  41. E.W. Lemmon, I.H. Bell, M. Huber, M. McLinden, Standard Reference Data Program, Gaithersburg (2018)

Download references

Acknowledgements

The authors thank Md. Jahangir Alam and Mohammad Ariful Islam, Jashore University of Science and Technology and Khulna University of Engineering & Technology, Bangladesh, for providing old experimental data. The authors are grateful to Dr. Marcia L. Huber, National Institute of Standard and Technology, Boulder, for sharing knowledge and cross-checking the modeling results.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MM contributed to evaluating the experimental data, fitting the consistent data to the ECS and RES models, reporting the results and writing, reviewing, and editing the whole manuscript. ART contributed to cross-checking and revising experimental data. RA and AM contributed to supervising, reviewing, and editing the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Monjur Morshed.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 116 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morshed, M., Tuhin, A.R., Akasaka, R. et al. Application of Extended Corresponding States (ECS) and Residual Entropy Scaling (RES) Techniques for Modeling Viscosity of cis-1,3,3,3-Tetrafluoropropene (R1234ze(Z)) with Revised Experimental Data. Int J Thermophys 44, 123 (2023). https://doi.org/10.1007/s10765-023-03231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03231-0

Keywords

Navigation