Skip to main content

Advertisement

Log in

Acid-Base Properties of Zirconium, Cerium and Lanthanum Oxides by Calorimetric and Catalytic Investigation

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The combined use of calorimetric and catalytic methods for the investigation of the acid-base properties of oxide systems is discussed with reference to the authors' work on pure and doped zirconia samples, ceria-zirconia and ceria-lanthana solid solutions. Adsorption microcalorimetry of ammonia and carbon dioxide had been used to characterize the samples, whose chemical and thermal history was taken into account. The catalytic behavior of these samples in the conversion of 4-methylpentan-2-ol, route to 4-methylpent-1-ene (starting product for the manufacture of polymers of superior technological properties), had also been studied. On the basis of the calorimetric data, a rationale for interpreting the data for the transformation of 4-methylpentan-2-ol is formulated, which takes into account the role of the concentration and strength of the sites in governing the competition among the various mechanisms for dehydration and dehydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Olah and Á. Molnár, Hydrocarbon Chemistry (Wiley-Interscience, New York, 1995).

    Google Scholar 

  2. E. Erlt, H. Knötzinger and J. Weitkamp, Handbook of Heterogeneous Catalysis (Wiley-VCH, Weinheim, 1997).

    Google Scholar 

  3. S.A. Gembicki, Stud. Surf. Sci. Catal. 130 (2000) 147.

    Google Scholar 

  4. K. Arata, Adv. Catal. 37 (1990) 165.

    Google Scholar 

  5. X. Song and A. Sayari, Catal. Rev.-Sci. Eng. 38 (1996) 329.

    Google Scholar 

  6. P.B. Venuto, Micropor. Mater. 2 (1994) 297.

    Google Scholar 

  7. A. Corma and H. Garcia, Catal. Today 38 (1997) 257.

    Google Scholar 

  8. K. Tanabe, Solid Acid and Bases (Kodansha, Tokyo and Academic Press, New York, 1970).

    Google Scholar 

  9. K. Tanabe, M. Misono, Y. Ono and H. Hattori, New Solid Acid and Bases (Kodansha, Tokyo and Elsevier, Amsterdam, 1989).

    Google Scholar 

  10. H. Hattori, Stud. Surf. Sci. Catal. 78 (1989) 35.

    Google Scholar 

  11. S. Malinowski and M. Marczewski, in: Catalysis, Specialist Periodical Reports, Vol. 8, Ch. 4 (The Royal Society of Chemistry, London, 1989).

    Google Scholar 

  12. H. Hattori, Chem. Rev. 95 (1995) 527.

    Google Scholar 

  13. D. Barthomeuf, Catal. Rev.-Sci. Eng. 51 (1996) 521.

    Google Scholar 

  14. Y. Ono and T. Baba, Catal. Today 38 (1997) 321.

    Google Scholar 

  15. E. Iglesia, D.G. Barton, J.A. Biscardi, M.J.L. Gines and S.L. Soled, Catal. Today 38 (1997) 339.

    Google Scholar 

  16. W.F. Hölderich, Stud. Surf. Sci. Catal. 75 (1993) 127.

    Google Scholar 

  17. K. Tanabe and W.F. Hölderich, Appl. Catal. A: General 181 (1999) 399.

    Google Scholar 

  18. R.J. Cvetanovic and Y. Amenomiya, Adv. Catal. 17 (1967) 103.

    Google Scholar 

  19. J.L. Falconer and J.A. Schwarz, Catal. Rev.-Sci. Eng. 25 (1983) 141.

    Google Scholar 

  20. J.L. Lemaitre, in: Characterisation of Heterogeneous Catalysts, Ch. 2, ed. F. Delannay (Dekker, New York, 1984).

    Google Scholar 

  21. G. Marcelin, in: Catalysis, Specialist Periodical Reports, Vol. 10, Ch. 3 (The Royal Society of Chemistry, London, 1993).

    Google Scholar 

  22. G. Busca, Catal. Today 41 (1998) 191.

    Google Scholar 

  23. P.C. Gravelle, Adv. Catal. 2 (1972) 191.

    Google Scholar 

  24. A. Auroux, in: Les Techniques Physiques d'E´tude des Catalyseurs, Ch. 24, eds. B. Imelik and J.C. Védrine (Technip, Paris, 1988).

    Google Scholar 

  25. N. Cardona-Martinez and J.A. Dumesic, Adv. Catal. 38 (1992) 149.

    Google Scholar 

  26. P.J. Andersen and H.H. Kung, in: Catalysis, Specialist Periodical Reports, Vol. 11, Ch. 11 (The Royal Society of Chemistry, London, 1994).

    Google Scholar 

  27. J.M. Winterbottom, in: Catalysis, Specialist Periodical Reports, Vol. 4 (The Royal Society of Chemistry, London, 1981).

    Google Scholar 

  28. H. Pines and J. Manassen, Adv. Catal. 16 (1966) 49.

    Google Scholar 

  29. H. Pines and W.O. Haag, J. Am. Chem. Soc. 83 (1961) 2847.

    Google Scholar 

  30. A.J. Lundeen and R. Van Hoozer, J. Am. Chem. Soc. 85 (1963) 2180.

    Google Scholar 

  31. A.J. Lundeen and R. Van Hoozer, J. Org. Chem. 32 (1967) 3386.

    Google Scholar 

  32. K. Thomke, in: Proc. Sixth Int. Congr. Catal., eds. G.C. Bond, P.B. Wells and F.C. Tomkins, Vol. 1 (The Royal Society of Chemistry, London, 1977).

    Google Scholar 

  33. B.H. Davis, J. Catal. 52 (1978) 176.

    Google Scholar 

  34. B.H. Davis and P. Ganesan, Ind. Eng. Chem., Prod. Res. Develop. 18 (1979) 191.

    Google Scholar 

  35. B.H. Davis, J. Catal. 52 (1978) 435.

    Google Scholar 

  36. C.A. Drake (Phillips Petroleum Co.), Eur. Pat. Appl. 91 662, 1983.

  37. M. Araki, K. Takahashi and T. Hibi (Sumitomo Chemical Co.), Eur. Pat. Appl. 0 150 832, 1985.

  38. M. Araki and T. Hibi (Sumitomo Chemical Co.), Eur. Pat. Appl. 0 222 356, 1986.

  39. A. Auroux, P. Artizzu, I. Ferino, V. Solinas, G. Leofanti, M. Padovan, G. Messina and R. Mansani, J. Chem. Soc. Faraday Trans. 91 (1995) 3263.

    Google Scholar 

  40. A. Auroux, P. Artizzu, I. Ferino, R. Monaci, E. Rombi, V. Solinas and G. Petrini, J. Chem. Soc., Faraday Trans. 92 (1996) 2619.

    Google Scholar 

  41. A. Auroux, P. Artizzu, I. Ferino, R. Monaci, E. Rombi and V. Solinas, Micropor. Mater. 11 (1997) 117.

    Google Scholar 

  42. M.G. Cutrufello, I. Ferino, V. Solinas, A. Primavera, A. Trovarelli, A. Auroux and C. Picciau, Phys. Chem. Chem. Phys. 1 (1999) 3369.

    Google Scholar 

  43. I. Ferino, M.F. Casula, A. Corrias, M.G. Cutrufello, R. Monaci and G. Paschina, Phys. Chem. Chem. Phys. 2 (2000) 1847.

    Google Scholar 

  44. G. Colón, J.A. Navío, R. Monaci and I. Ferino, Phys. Chem. Chem. Phys. 2 (2000) 4453.

    Google Scholar 

  45. M.G. Cutrufello, I. Ferino, R. Monaci, E. Rombi, G. Colón and J.A. Navío, Phys. Chem. Chem. Phys. 3 (2001) 2928.

    Google Scholar 

  46. M.G. Cutrufello, I. Ferino, R. Monaci, E. Rombi and V. Solinas, Stud. Surf. Sci. Catal. 140 (2001) 175.

    Google Scholar 

  47. G. Busca and V. Lorenzelli, Mater. Chem. 7 (1982) 89.

    Google Scholar 

  48. G. Zhang, H. Hattori and K. Tanabe, Appl. Catal. 36 (1988) 189.

    Google Scholar 

  49. A. Auroux and A. Gervasini, J. Phys. Chem. 94 (1990) 6371.

    Google Scholar 

  50. A. Zecchina, D. Scarano, S. Bordiga, G. Ricchiardi, G. Spoto and F. Geobaldo, Catal. Today 27 (1996) 403.

    Google Scholar 

  51. V. Bolis, C. Morterra, M. Volante, L. Orio and B. Fubini, Langmuir 6 (1990) 695.

    Google Scholar 

  52. M.-Y. He and J.G. Ekerdt, J. Catal. 87 (1984) 238.

    Google Scholar 

  53. A. Zecchina, S. Coluccia, E. Guglielminotti and G. Ghiotti, J. Phys. Chem. 75 (1971) 2790.

    Google Scholar 

  54. P. Pichat, J. Veron, B. Claudel and M.V. Mathieu, J. Phys. Chem. 33 (1966) 1026.

    Google Scholar 

  55. A. Trovarelli, Catal. Rev.-Sci. Eng. 38 (1996) 439.

    Google Scholar 

  56. V.R. Choudary and V.H. Rane, J. Catal. 130 (1991) 411.

    Google Scholar 

  57. K. Tanabe, T. Sumiyoshi, K. Shibata, T. Kiyoura and J. Kitagawa, Bull. Chem. Soc. Jpn. 47 (1974) 1064.

    Google Scholar 

  58. H.H. Kung, J. Solid State Chem. 52 (1984) 191.

    Google Scholar 

  59. A. Trovarelli, F. Zamar, J. Llorca, C. de Leitenburg, G. Dolcetti and J.T. Kiss, J. Catal. 169 (1997) 490.

    Google Scholar 

  60. G. Balducci, J. Kapar, P. Fornasiero, M. Graziani, M.S. Islam and J.D. Gale, J. Phys. Chem. B 101 (1997) 1750.

    Google Scholar 

  61. J. Kijenski and A. Baiker, Catal. Today 5 (1989) 1.

    Google Scholar 

  62. N.D. Parkins, J. Chem. Soc. (A) 1969, 410.

  63. B. Bachiller-Baeza, I. Rodriguez-Ramos and A. Guerrero-Ruiz, Langmuir 14 (1998) 3556.

    Google Scholar 

  64. S. Bernal, J.A. Diaz, R. Garcia and J.M. Rodriguez-Izquierdo, J. Mater. Sci. 20 (1985) 537.

    Google Scholar 

  65. H. Knözinger, in: The Dehydration of Alcohols, Vol. 2, Ch. 12, ed. S. Patai (Interscience, London, 1971).

    Google Scholar 

  66. J. Sedlácek and M. Kraus, React. Kinet. Catal. Lett. 2 (1975) 57.

    Google Scholar 

  67. L. Nondek and J. Sedlácek, J. Catal. 40 (1975) 34.

    Google Scholar 

  68. Y. Murase and E. Kato, J. Am. Ceram. Soc. 62 (1979) 527.

    Google Scholar 

  69. Y. Murase and E. Kato, J. Am. Ceram. Soc. 66 (1983) 196.

    Google Scholar 

  70. C. Morterra, G. Cerrato, L. Ferroni and L. Montanaro, Mater. Chem. Phys. 37 (1994) 243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutrufello, M., Ferino, I., Monaci, R. et al. Acid-Base Properties of Zirconium, Cerium and Lanthanum Oxides by Calorimetric and Catalytic Investigation. Topics in Catalysis 19, 225–240 (2002). https://doi.org/10.1023/A:1015376409863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015376409863

Navigation