Skip to main content
Log in

Luminescence of Bismuth‐Activated Ceramics of Yttrium and Scandium Oxides

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

The luminescence spectra of Y2O3:Bi and Sc2O3:Bi ceramics have been investigated. The spectra have been resolved into elementary components by the Alentsev–Fock method. It has been established that the luminescence is attributed to emission centers of three types, two of which are due to the replacement of Y3+ (or Sc3+) by Bi3+ at the nodes of the crystal lattice of Y2O3 (or Sc2O3) with the point symmetry C 2 and C 3i . The emission center Bi3+ in the position C3i leads to the appearance of blue luminescence with maxima at 3.03 eV for Y2O3:Bi and at 3.05 eV for Sc2O3:Bi; this luminescence is attributed to the transition 3 P 11 S 0. The emission center Bi3+ in the position C 2 initiates green luminescence (which is also related to the 3 P 11 S 0 transition in Bi3+) with a maximum in the region of 2.40 eV in Y2O3:Bi and in the region of 2.46 eV in Sc2O3:Bi. The red luminescence band with maxima at 1.85 eV in Y2O3:Bi and at 1.95 eV in Sc2O3:Bi is related to the presence of structural defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Ofner, M. J. Ramsey, F. P. Netzer, et al., J. Phys. Condens. Matter, 6, No. 18, 3453–3458 (1994).

    Google Scholar 

  2. L. V. Viktorov, A. V. Kruzhalov, V. L. Petrov, et al., Inorganic Scintillation Materials, Dep. at VINITI 22.10.90, No. 5433-V90, Sverdlovsk (1990).

  3. A. M. van de Gaats and G. Blasse, Chem. Phys. Lett., 243, Nos. 5–6, 559–563 (1995).

    Google Scholar 

  4. G. A. Gogotsi, I. A. Zakharov, A. M. Kushnirenko, and E. S. Lukin, Probl. Prochn., No. 10, 45–50 (1979).

  5. G. A. Gogotsi, Ya. L. Grushevskii, and V. P. Zavada, Probl. Prochn., No. 4, 27–31 (1980).

  6. I. A. Meriloo and R. V. Melenina, Tr. Inst. Fiz. Akad. Nauk ÉSSR, 39, 250–261 (1972).

    Google Scholar 

  7. Su Qiang, C. Barthou, J. P. Denis, et al., J. Luminesc., 28, 1–11 (1983).

    Google Scholar 

  8. M. V. Fok, Tr. FIAN, 59, 3–24 (1972).

    Google Scholar 

  9. A. M. Rzhevskii, N. I. Makarevich, and P. P. Mardilovich, Software System for Mathematical Processing of Optical Spectra on an "EÉlektronika DZ-28" Microcomputer, Preprint No. 513 of the Institute of Physics of the BSSR Academy of Sciences [in Russian] (1988).

  10. N. E. Lushchik and Ch. B. Lushchik, Tr. Inst. Fiz. Astron. Akad. Nauk ÉSSR, 6, 5–62 (1957).

    Google Scholar 

  11. G. Blasse and A. Bril, J. Chem. Phys., 48, 217–222 (1968).

    Google Scholar 

  12. M. U. Bulii, S. E. Zelens'kii, V. P. Okhrimenko, and S. M. Yablochkov, Izv. Akad. Nauk SSSR, Ser. Fiz., 49, 2010–2014 (1985).

    Google Scholar 

  13. S. G. Zazubovich and V. V. Khizhnyakov, Izv. Akad. Nauk SSSR, Ser. Fiz., 49, 1874–1879 (1985).

    Google Scholar 

  14. M. J. Weber, in: Proc. Int. Workshop on Bismuth Germanate, Princeton Univ., 10–12 July (1982), pp. 3–20.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordun, O.M. Luminescence of Bismuth‐Activated Ceramics of Yttrium and Scandium Oxides. Journal of Applied Spectroscopy 69, 67–71 (2002). https://doi.org/10.1023/A:1015311725546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015311725546

Navigation