Skip to main content
Log in

Desorption Behaviour of Polycyclic Aromatic Hydrocarbons in Harbour Sludge from the Port of Rotterdam, The Netherlands

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Desorption of eight polycyclic aromatic hydrocarbons (PAH) fromtwo harbour sludges from the Port of Rotterdam, the Netherlands,was studied by column elution experiments. When water moves in a sludge layer desorbing contaminants like PAH can be dispersedin the environment. Separation of liquid and solid phase inbatches of sludge, stored for more than three years, by ultra-centrifugation at 4 °C yielded equilibrium partition coefficients. Temperature effects could not account for the observed differences with reported literature values. The differences are attributed to the contact time of PAH in thesediment. Laboratory data reported in the literature were oftenobtained after short contact times and therefore may not represent equilibrium partitioning. Our values represent contacttimes in excess of three years and are therefore more representative for the field conditions. Partition coefficientsobtained from column elution experiments were slightly above those obtained from the batch experiments. During column elutionof the sludge from the Beneden Merwede sorption equilibriumwas absent for the lighter compounds. This is attributed to the presence of a large portion of immobile water in the columns. Elution in the Beerkanaal columns occurred at near sorption equilibrium although pore water velocities were higher. Assumingthat desorption is diffusion controlled, observed desorption inboth materials could be explained. The non-equilibrium desorptionin the Beneden Merwede sludge for phenanthrene, and to alesser extent for anthracene and fluoranthene, could be describedby a diffusion limited model assuming spherical particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul, A. S., Gibson, T. L. and Rai, D. N.: 1990, ‘Use of humic acid solution to remove organic contaminants from hydrogeological systems’, Environ. Sci. Technol. 24, 328–333.

    Google Scholar 

  • Ball, W. P. and Roberts, P. V.: 1991, ‘Long-term sorption of halogenated organic chemicals by aquifer material. 2. Interparticle diffussion’, Environ. Sci. Technol. 25, 1237–1249.

    Google Scholar 

  • Beigel, C. and Di Pietro, L.: 1999, ‘Transport of triticonazole in homogeneous soil columns: Influence of nonequilibrium sorption’, Soil Sci. Soc. Am. J. 63, 1077–1086.

    Google Scholar 

  • Brusseau, M. L., Jessup, R. E. and Rao, P. S. C.: 1991a, ‘Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes’, Environ. Sci. Technol. 25, 134–142.

    Google Scholar 

  • Brusseau, M. L., Larsen, T. and Christensen, T. H.: 1991b, ‘Rate-limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials’, Water Res. Res. 27, 1137–1145.

    Google Scholar 

  • Chiou, C. T., Porter, L. J. and Schmedding, D. W.: 1983, ‘Partition equilibria of nonionic organic compounds between soil organic matter and water’, Environ. Sci. Technol. 17, 227–231.

    Google Scholar 

  • Coates, J. D., Anderson, R. T. and Lovley, D. R.: 1996a, ‘Oxidation of polycyclic aromatic hydrocarbons under sulphate-reducing conditions’, Appl. Environ. Microbio. 62, 1099–1101.

    Google Scholar 

  • Coates, J. D., Anderson, R. T., Woodward, J. C., Phillips, E. J. P. and Lovley, D. R.: 1996b, ‘Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions’, Environ. Sci. Technol. 30, 2784–2789.

    Google Scholar 

  • Coates, J. D., Woodward, J. C., Allen, J., Philp, P. and Lovley, D. R.: 1997, ‘Anaerobic degradation of polycyclic aromatic hydrocarbons and alkenes in petroleum-contaminated marine harbor sediments’, Appl. Environ. Microbiol. 63, 3589–3593.

    PubMed  Google Scholar 

  • Cornelissen, G.: 1999, ‘Mechanisms and consequences of slow desorption of organic compounds from sediments’, Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands.

    Google Scholar 

  • Crank, J.: 1975, The Mathematics of Diffusion, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Crunkilton, R. L. and DeVita, W. M.: 1997, ‘Determination of aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs) in an urban stream’, Chemosphere 35, 1447–1463.

    Google Scholar 

  • De Maagd, P. G.-J.: 1996, ‘Polycyclic aromatic hydrocarbons: Fate and effects in the aquatic environment’, Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  • De Maagd, P. G.-J., Ten Hulscher, D. T. E. M., Van den Heuvel, H., Opperhuizen, A. and Sijm, D. T. H. M.: 1998, ‘Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n-octanol/water partition coefficients, and Henry's law constants’, Environ. Toxicol. Chem. 17, 251–257.

    Google Scholar 

  • Dewulf, J., Van Langenhove, H. and Grare, S.: 1999, ‘Sediment/water and octanol/water equilibrium partitioning of volatile organic compounds: temperature dependence in the 2–25 °C range’, Water Res. 33, 2424–2436.

    Google Scholar 

  • Domenico, P. A. and Schwartz, F. W.: 1990, Physical and Chemical Hydrogeology, John Wiley, New York, NY, U.S.A.

    Google Scholar 

  • Dunnivant, F. M., Jardine, P. M., Taylor, D. L. and McCarthy, J. F.: 1992, ‘Transport of naturally occuring dissolved organic carbon in laboratory columns containing aquifer material’, Soil Sci. Soc. Am. J. 56, 437–444.

    Google Scholar 

  • Enfield, C. G., Bengtsson, G. and Lindqvist, R.: 1989, ‘Influence of macromolecules on chemical transport’, Environ. Sci. Technol. 23, 1278–1286.

    Google Scholar 

  • Gaber, H. M., Inskeep, W. P., Comfort, S. D. and Wraith, J. M.: 1995, ‘Nonequilibrium transport of atrazine through large intact soil cores’, Soil Sci. Soc. Am. J. 59, 60–67.

    Google Scholar 

  • Grathwohl, P. and Reinhard, M.: 1993, ‘Desorption of trichloroethylene in aquifer material: Rate limitation at the grain scale’, Environ. Sci. Technol. 27, 2360–2366.

    Google Scholar 

  • Grathwohl, P., Gewald, T., Pyka, W. and Schüth, C.: 1993, ‘Determination of Pollutant Release Rates from Contaminated Aquifer Materials’, in F. Arendt, G. J. Annokkée, R. Bosman and W. J. Van der Brink (eds), Contaminated Soil' 93, Kluwer, Dordrecht, The Netherlands, pp. 175–184.

    Google Scholar 

  • Grathwohl, P., Pyka, W. and Merkel, P.: 1994, ‘Desorption of Organic Pollutants (PAHs) from Contaminated Aquifer Material’, in T. Dracos and F. Stauffer (eds), AIRH Symposium on Transport and Reactive Processes in Aquifers, Balkema, Amsterdam, The Netherlands, pp. 469–474.

    Google Scholar 

  • He, Y., Yediler, A., Sun, T. and Kettrup, A.: 1995, ‘Adsorption of fluoranthrene on soil and lava: Effects of the organic carbon contents of adsorbents and temperature’, Chemosphere 30, 141–150.

    Google Scholar 

  • Hegeman, W. J. M., Van der Weijden, C. H. and Loch, J. P. G.: 1995, ‘Sorption of benzo(a)pyrene and phenanthrene on suspended harbour sediment as a function of suspended sediment concentration and salinity: A laboratory study using the cosolvent partition coefficient’, Environ. Sci. Technol. 29, 363–371.

    Google Scholar 

  • Karickhoff, S. W., Brown, D. S. and Scott, T. A.: 1979, ‘Sorption of hydrophobic pollutants on natural sediments’, Water Res. 13, 241–248.

    Google Scholar 

  • Keijzer, Th. J. S.: 2000, ‘Chemical osmosis in natural clayey materials’, Geologica Ultraiectina 196, Ph.D. Thesis, Universiteit Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Keijzer, Th. J. S, and Loch, J. P. G.: 2001, ‘Chemical osmosis in compacted dredging sludge’, Soil Sci. Soc. Am. J. 65, 1045–1055.

    Google Scholar 

  • Kicinski, H.-G.: 1992, ‘PAH-Festphasenextraction aus Wasserproben (Trinkwasser und maessig belastetes Oberflachenwasser) durch Hyaminzusatz’, Z. Wasser-Abwass-Forsch. 25, 289–294.

    Google Scholar 

  • Kookana, R. S., Schuller, R. D. and Aylmore, L. A. G.: 1993, ‘Simulation of simazine transport through soil columns using time-dependent sorption data measured under flow conditions’, J Cont. Hydrol. 14, 93–115.

    Google Scholar 

  • Langenhoff, A. A. M., Zehnder, A. J. B. and Schraa, G.: 1996, ‘Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns’, Biodegradation 7, 267–274.

    Google Scholar 

  • Liu, H. and Amy, G.: 1993, ‘Modeling partitioning and transport interactions between natural organic matter and polynuclear aromatic hydrocarbons in groundwater’, Environ. Sci. Technol. 27, 1553–1562.

    Google Scholar 

  • Loch, J. P. G.: 1996, ‘Behaviour and Fate of Organic Contaminants in Soil and Groundwater’, in H. F. A. M. de Haan and M. I. Visser-Reyneveld (eds), Soil Pollution and Soil Protection, International Training Centre (PHLO), Agricultural University Wageningen, Wageningen, The Netherlands, pp. 181–199.

    Google Scholar 

  • Lüers, F. and Ten Hulscher, Th. E. M.: 1996, ‘Temperature effect on the partitioning of polycyclic aromatic hydrocarbons between natural organic carbon and water’, Chemosphere 33, 643–657.

    Google Scholar 

  • Mackay, D., Shiu, W. Y. and Ma, K. C.: 1992, Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Lewis, London, U.K.

    Google Scholar 

  • Maxin, C. R. and Kögel-Knabner, I.: 1995, ‘Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter’, Eur. J. Soil Sci. 46, 193–204.

    Google Scholar 

  • Meckenstock, R. U., Annweiler, E., Michaelis, W., Richnow, H. H. and Schink, B.: 2000, ‘Anaerobic napthalene degradation by a sulfate-reducing enrichment culture’, Appl. Environ. Microbiol. 66, 2743–2747.

    PubMed  Google Scholar 

  • Piatt, J. J., Backus, D. A., Capel, P. D. and Eisenreich, S. J.: 1996, ‘Temperature-dependent sorption of napthalene, phenanthrene and pyrene to low organic carbon aquifer sediments’, Environ. Sci. Technol. 30, 751–760.

    Google Scholar 

  • Puchelt, H. and Bergfeldt, B.: 1992, ‘Major and Trace Element Concentrations in Waters Centrifuged from Unsaturated Soils’, in Y. K. Kharaha and A. S. Meast (eds), Proceedings of the 7th International Symposium on Water-rock Interaction, Vol. 1. Low Temperature Environments, Park City, Utah, U.S.A., pp. 751–752.

  • Schrap, S. M. and Opperhuizen, A.: 1992, ‘On the contradictions between experimental sorption data and the sorption partitioning model’, Chemosphere 24, 1259–1282.

    Google Scholar 

  • Schüth, C. and Grathwohl, P.: 1994, ‘Nonequilibrium Transport of PAHs: A Comparison of Column and Batch Experiments’, in T. Dracos and F. Stauffer (eds), AIRH Symposium on Transport and Reactive Processes in Aquifers, Balkema, Amsterdam, The Netherlands, 143–148.

    Google Scholar 

  • Schwarzenbach, R. P., Gschwend, P. M. and Imboden, D. M.: 1993, Environmental Organic Chemistry, Wiley, New York, NY, U.S.A.

    Google Scholar 

  • Stigliani, W. M., Jaffe, P. R. and Anderberg, S.: 1993, ‘Heavy metal pollution in the Rhine basin’, Environ. Sci. Technol. 27, 786–793.

    Google Scholar 

  • Ten Hulscher, Th. E. M. and Cornelissen, G.: 1995, ‘Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutanys – A review’, Chemosphere 32, 609–626.

    Google Scholar 

  • Thierrin, J., Davis, G.B., Barber, C., Patterson, B.M., Pribac, F., Power, T.R.and Lambert, M.: 1993, ‘Natural degradation rates of BTEX compounds and naphthalene in a sulphate reducing groundwater environment’, Hydrol. Sci. J. 38, 309–322.

    Google Scholar 

  • Totsche, K. U., Danzer, J. and Kögel-Knabner, I.: 1997, ‘Dissolved organic matter enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments’, J. Environ. Qual. 26, 1090–1100.

    Google Scholar 

  • Van Agteren, M. H., Keuning, S. and Janssen, D. B.: 1998, Handbook of Biodegradation and Biological Treatment of Hazardous Organic Compounds. Environment and Chemistry,Vol. 2, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Van Beek, C. G. E. M. and Pal, R. A. J.: 1978. ‘The influence of cation exchange and gypsum solubility on the transport of sodium, calcium and sulphate through soils’, J. Hydrol. 36, 133–142.

    Google Scholar 

  • Van Zoest, R. and Van Eck, G. T. M.: 1993. ‘Historical input and behaviour of hexachlorobenzene, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in two dated sediment cores from the Scheldt estuary, SW Netherlands’, Marine Chem. 44, 95–103.

    Google Scholar 

  • Wilkens, B. J.: 1995, ‘Evidence of groundwater contamination by heavy metals through soil passage under acidifying conditions, Geologica Ultraiectina 129’, Ph.D. Thesis, Universiteit Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Wu, S.-C. and Gschwend, M.: 1986. ‘Sorption kinetics of hydrophobic organic compounds to natural sediments and soils’, Environ. Sci. Technol. 20, 717–725.

    Google Scholar 

  • Zhang, X. and Young, L. Y.: 1997. ‘Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia’, Appl. Environ. Microbiol. 63, 4759–4764.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. J. S. Keijzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keijzer, T.J.S., Middeldorp, P.F., van Alphen, M. et al. Desorption Behaviour of Polycyclic Aromatic Hydrocarbons in Harbour Sludge from the Port of Rotterdam, The Netherlands. Water, Air, & Soil Pollution 136, 361–385 (2002). https://doi.org/10.1023/A:1015247311769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015247311769

Navigation