Skip to main content
Log in

Non-Carbon Nanotubes (Review). Part 2. Types and Structure

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Various types and structures of synthesized non-carbon nanotubes (N-NT) based on carbonitrides B x C y N z , boron nitride BN, sulfides WS2, MoS2, selenides NbSe2, halides NiCl2, transition metal oxides SiO2, TiO2, MoO3, V2O5 are considered, as well as theoretically predicted N-NT based on P, Si, Ge, and III-V semiconductors. General criteria for the stability of non-carbon nanotubes are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Pokropivnyi, “Non-carbon nanotubes (review). I. Synthesis methods,” Poroshk. Metall., Nos. 9-10, 50-63 (2001).

  2. H. Nozaki and S. Itoh, “Structural stability of BC2N,” J. Phys. Chem. Solids, 57,No.1, 41-49 (1996).

    Google Scholar 

  3. E. Hernandez, C. Gose, P. Bernier, and A. Rubio, “Elastic properties of single-wall nanotubes,” J. Appl. Phys. A, 68, 287-292 (1999).

    Google Scholar 

  4. M. Cote, M. L. Cohen, and D. J. Chadi, “Theoretical study of the structural and electronic properties of GaSe nanotubes,” Phys. Rev. B, 58,No.8, R4227-R4280 (1998).

    Google Scholar 

  5. T. S. Bartnitskaya, G. S. Oleinik, A. V. Pokropivnyi, and V. V. Pokropivnyi, “Synthesis, structure, and mechanism of formation of BN nanotubes,” Pis'ma v ZhÉTF, 69,No.2, 145-150 (1999).

    Google Scholar 

  6. V. V. Pokropivnyi, V. V. Skorokhod, A. V. Kurdyumov, et al., “Boron nitride analogues of fullerenes, nanotubes, and fullerites,” Proc. SPIE, 3790, 213-218 (1999).

    Google Scholar 

  7. V. V. Pokropivnyi, V. V. Skorokhod, G. S. Oleinik, et al., “Boron nitride analogs of fullerenes (the fulborenes), nanotubes, and fullerites (the fulborenites),” J. Solid. St. Chem., 154, 214-222 (2000).

    Google Scholar 

  8. D. Goldberg, Y. Bando, M. Eremetz, et al., “BN nanotube growth defects and their annealing-out under electron irradiation,” Chem. Phys. Lett., 279, 191-196 (1997).

    Google Scholar 

  9. Y. Saito, M. Maida, and T. Matsumoto, “Structures of BN-NTs with single layer and multilayers produced by arc discharge,” J. Appl. Phys. Japan, Part 1,38,No.1A, 159-163 (1999).

    Google Scholar 

  10. Y. Saito and M. Maida, “Square, pentagon, and heptagon rings at BN nanotube tips,” J. Phys. Chem. A, 103,No.10, 1291-1293 (1999).

    Google Scholar 

  11. Y. Shimizu, Y. Moriyoshi, H. Tanaka, and S. Komatsu, “BN nanotubes, webs, and coexisting amorphous phase formed by the plasma jet method,” Appl. Phys. Lett., 75,No.7, 929-931 (1999).

    Google Scholar 

  12. P. W. Fowler, K. M. Rogers, G. Seifert, et al., “Pentagonal rings and nitrogen excess in fullerene-based BN cages and NT's cups,” Chem. Phys. Lett.,299, 359-367 (1999).

    Google Scholar 

  13. D. P. Yu, X. S. Sun, C. S. Lee, et al., “Synthesis of boron nitride nanotubes by means of eximer laser ablation at high temperature,” Appl. Phys. Lett., 72,No.16, 1966-1968 (1998).

    Google Scholar 

  14. O. Stephan, Y. Bando, A. Loiseau, et al., “Formation of small single layer and nested BN cages under electron irradiation of nanotubes and bulk material,” Appl. Phys. A., 67, 107-111 (1998).

    Google Scholar 

  15. D. Goldberg, Y. Bando, O. Stephan, and K. Kurashima, “Octahedral BN fullerenes formed by electron beam irradiation,” Appl. Phys. Lett., 73,No.17, 2441-2443 (1998).

    Google Scholar 

  16. D. Goldberg, Y, Bando, K. Kurashima, and T. Sasaki, “Boron-doped carbon fullerenes and nanotubes formed through electron irradiation-induced solid-state phase transformation,” Appl. Phys. Lett., 72,No.17, 2108-2110 (1998).

    Google Scholar 

  17. Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon,” Science, 281, 973-975 (1998).

    Google Scholar 

  18. F. Banhart, “The transformation of onions to diamond under electron irradiation,” J. Appl. Phys., 81,No.8, 3440-3445 (1997).

    Google Scholar 

  19. M. Remskar, S. Skraba, C. Ballif, et al., “MoS2 as microtubes,” Appl. Phys. Lett., 69,No.3, 351-353 (1996).

    Google Scholar 

  20. M. Remskar, Z. Skraba, R. Sanjines, et al., “MoS2 nanotubes: an electron microscope study,” Surf. Rev. Lett., 5,No.1, 423-426 (1998).

    Google Scholar 

  21. M. Remskar, Z. Skraba, M. Regula, et al., “New crystal structures of MoS2: microtubes, ribbons, and ropes,” Adv. Mater., 10,No.3, 246-249 (1998).

    Google Scholar 

  22. M. Remskar, Z. Scraba, C. Ballif, et al., “Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study,” Surf. Sci., 433-435, 637-641 (1999).

    Google Scholar 

  23. M. Remskar, Z. Scraba, R. Sanhjines, and F. Levy, “Syntactic coalescence of WS2 nanotubes,” Appl. Phys. Lett., 74,No.24, 3633-3635 (1999).

    Google Scholar 

  24. D. H. Galvan, Jun-Ho Kim, M. B. Maple, et al., “Formation of NbSe2 nanotubes by electron irradiation,” Fullerene Sci. and Technol., 8,No.3, 143-151 (2000).

    Google Scholar 

  25. Y. Q. Zhu, W. K. Hsu, H. Terrones, et al., “Morhology, structure, and growth of WS2 nanotubes,” J. Mat. Chem., 10, 2570-2577 (2000).

    Google Scholar 

  26. W. K. Hsu, B. H. Chang, Y. Q. Zhu, et al., “An altenative route to MoS2 nanotubes,”J. Amer. Chem. Soc., 122,10155-10158 (2000).

    Google Scholar 

  27. W. K. Hsu, Y. Q. Zhu, C. B. Boothroyd, et al., “Mixed phase WxMoyCzS2 nanotubes,” Chem. Mater., 12,No.2, 3541-3546 (2000).

    Google Scholar 

  28. W. K. Hsu, Y. Q. Zhu, S. Firth, et al., “WxMoyCzS2 nanotubes,” Carbon, 39, 1107-1116 (2001).

    Google Scholar 

  29. W. K. Hsu, Y. Q. Zhu, N. Yao, et al., “Ti-doped MoS2 nanostructures,” Adv. Functional Mater., No. 1, 69-74 (2001).

  30. Y. Q. Zhu, W. K. Hsu, S. Firth, et al., “Nb-doped WS2 nanotubes,” Chem. Phys. Lett., 342, 15-21 (2001).

    Google Scholar 

  31. Y. R. Hacohen, E. Grunbaum, R. Tenne, et al., “Cage structures and nanotubes of NiCl2,” Nature, 395, 336-337 (1998).

    Google Scholar 

  32. P. M. Ajayan, O. Stephan, Ph. Redlich, and C. Colliex, “Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures,” Nature, 375, 564-567 (1995).

    Google Scholar 

  33. L. Nania and T. F. George, “Laser-assisted formation of metal oxide microtubes,” J. Mater. Res., 12,No.1, 283-284 (1997).

    Google Scholar 

  34. T. Kasuga, M. Hiramatsu, A. Hosom, et al., “Formation of titanium oxide nanotube,” Langmuir, 14,No.2, 3160-3163 (1998).

    Google Scholar 

  35. G. A. Ozin, C. T. Kresge, S. M. Yang, et al., Adv. Mater., 11, 52 (1999).

    Google Scholar 

  36. S. M. Yang, I. Sokolov, N. Coombs, et al., “Formation of hollow helicoids in mesoporous silica: supramolecular origami,” Adv. Mater., 11,No.17, 1427-1431 (1999).

    Google Scholar 

  37. M. Zhang, Y. Bando, K. Wada, and K. Kurashima, “Synthesis of nanotubes and nanowires of silicon oxide,” J. Mat. Sci. Lett., 18, 1911-1913 (1999).

    Google Scholar 

  38. Y. Q. Zhu, W. K. Hsu, N. Grobert, et al., “Self-assembly of Si nanostructures,” Chem. Phys. Lett., 322, 312-320 (2000).

    Google Scholar 

  39. B. Marsen and K. Sattler, “Fullerene-structured nanowires of silicon,” Phys. Rev. B, 60,No.16, 11593-11600 (1999).

    Google Scholar 

  40. A. A. Demkov, W. Windl, and O. F. Sankey, Phys. Rev. B, 53, 11288 (1996).

    Google Scholar 

  41. J. W. Mintmire and C. T. White, Carbon Nanotubes: Preparaion and Properties, T. W. Ebbsen (ed.), CRC Press, Boca Raton (1997).

    Google Scholar 

  42. G. Seifert and Th. Frauenheim, “On the stability of non-carbon nanotubes,” J. Korean Phys. Soc., 37,No.2, 89-92 (2000).

    Google Scholar 

  43. G. Seifert and H. Hernandez, “Theoretical prediction of phosphorous nanotubes,” Chem. Phys. Lett., 318, 355-360 (2000).

    Google Scholar 

  44. G. Seifert, Th. Kohler, H. M. Urbassek, et al., “Tubular structure of silicon,” Phys. Rev. B, 63,No.19, 3409-3412 (2001).

    Google Scholar 

  45. G. Seifert, Th. Kohler, Z. Hajnal, and Th. Frauenheim, Solid St. Commun., 119, 653 (2001).

    Google Scholar 

  46. M. L. Cohen, “Nanotubes, nanoscience, and nanotechnology,” Mat. Sci. Eng. C, 15, 1-11 (2001).

    Google Scholar 

  47. A. V. Bulgakov, O. F. Bobrenok, and V. I. Kosyakov, “Laser ablation synthesis of phosphorous clusters,” Chem. Phys. Lett., 320, 19-25 (2000).

    Google Scholar 

  48. S. B. Fagan, D. S. Sartor, R. Mota, et al., Mat. Res. Soc. Symp. Proc., 633, A1341 (2001).

    Google Scholar 

  49. J. Tersoff and R. S. Ruoff, “Structural properties of a carbon nanotube crystal,” Phys. Rev. Lett., 73,No.:5, 676-679 (1994).

    Google Scholar 

  50. G. Seifert, Th. Frauenheim, Th. Kohler, and H. M. Urbassek, “Tubular structure of siloxenes,” Phys. Stat. Sol.(B),225,No.2, 393-399 (2001).

    Google Scholar 

  51. F. Buda, V. Tozzini, and A. Fasolino, “Spontaneous formation and stability of GaP cage structures: a theoretical prediction of a new fullerene,” Mat. Res. Soc. Symp. Proc., 637 (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokropivny, V.V. Non-Carbon Nanotubes (Review). Part 2. Types and Structure. Powder Metallurgy and Metal Ceramics 40, 582–594 (2001). https://doi.org/10.1023/A:1015232003933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015232003933

Navigation