Skip to main content
Log in

Environmental Remediation Using Catalysis Driven Under Electromagnetic Irradiation

  • Published:
Catalysis Surveys from Japan Aims and scope Submit manuscript

Abstract

Photocatalytically reductive dehalogenation using nano-sized semiconductors such as ZnS and CdS nanocrystallites under respective UV (λ > 300 nm) and visible light (λ > 400 nm) irradiation is emphasized as a novel methodology for detoxification of halogenated organic compounds under mild conditions. Nano-sized ZnS and CdS can supply the compounds with photoexcited electrons of high reduction potentials. This photocatalytic dehalogenation is so selective that it gives no other products than the dehalogenated compounds. Microwave-assisted catalytic dehalogenation of halogenated organic compounds shows distinguished characteristics in rapid and complete detoxification, i.e., the selective heating and energy-saving when compared to conventional heating. Predominance of reductive dehalogenation performed in the above two systems is relieved in comparison with other reductive and oxidative techniques as detoxification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Hitchman, R.A. Spackman, R.A. Ross and C. Agra, Chem. Soc. Rev. 423 (1995).

  2. S. Sharpe and D. Mackay, Environ. Sci. Technol. 34 (2000) 2373.

    Google Scholar 

  3. C. Hogue, Chem. Eng. News 24 (2000) 31.

    Google Scholar 

  4. D. Shin, S. Choi, J.-E. Oh and Y.-S. Chang, Environ. Sci. Technol. 33 (1999) 2657.

    Google Scholar 

  5. B.K. Gullett, A. Touati and C.W. Lee Environ. Sci. Technol. 34 (2000) 2069.

    Google Scholar 

  6. J. Kaiser, Sci. 288 (2000) 1313.

    Google Scholar 

  7. J. Kaiser, Sci. 290 (2000) 1071.

    Google Scholar 

  8. J. Kaiser, Sci. 288 (2000) 1941.

    Google Scholar 

  9. B. Hileman, Chem. Eng. News 29 (2000) 13.

    Google Scholar 

  10. B. Hileman, Chem. Eng. News 14 (2000) 31.

    Google Scholar 

  11. C. Hogue, Chem. Eng. News 20 (2000) 35.

    Google Scholar 

  12. N. Yamashida, Private paper (2000).

  13. EPA estimation from a posting paper of the American Council on Science and Health: Public Health Concerns About Environmental Polychlorinated Biphenyls (PCBs), (1997).

  14. M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95 (1995) 69.

    Google Scholar 

  15. S.G. Merica, N.J. Bunce, W. Jedral and J. Lipkowski, J. Appl. Electrochem. 28 (1998) 645.

    Google Scholar 

  16. N. Sonoyama and T. Sakata, Environ. Sci. Technol. 33 (1999) 3438.

    Google Scholar 

  17. P. Dabo, A. Cyr, F. Laplante, F. Jean, H. Menard and J. Lessard, Environ. Sci. Technol. 34 (2000) 1265.

    Google Scholar 

  18. J. Rodgers, W. Jedral and N.J. Bunce, Environ. Sci. Technol. 33 (1999) 1453.

    Google Scholar 

  19. S.G. Pavlostathis and M.T. Prytula, Environ. Sci. Technol. 34 (2000) 4001.

    Google Scholar 

  20. B. Kuipers, W. Cullen and W.W. Mohn, Environ. Sci. Technol. 33 (1999) 3579.

    Google Scholar 

  21. L. Adrian, U. Szewzyk, J. Wecke and H. Görisch, Nature 408 (2000) 580.

    Google Scholar 

  22. J.F. Quensen III, S.A. Mueller, M.K. Jain and J.M. Tiedje, Sci. 280 (1998) 722.

    Google Scholar 

  23. X. Maymó-Gatell, Y. Chien, J.M. Gossett and S.H. Zinder, Sci. 276 (1997) 1568.

    Google Scholar 

  24. S.H. Streger, C.W. Condee, A.P. Togna and M.F. Deflaun, Environ. Sci. Technol. 33 (1999) 4477.

    Google Scholar 

  25. K.S. Lin and P. Wang, Environ. Sci. Technol. 33 (1999) 3278.

    Google Scholar 

  26. K.S. Lin and P. Wang, Environ. Sci. Technol. 34 (2000) 4849.

    Google Scholar 

  27. J.E. Duffy, M.A. Anderson, C.G. Hill Jr. and W.A. Zeltner, Environ. Sci. Technol. 34 (2000) 3199.

    Google Scholar 

  28. G. Nicoll and J.S. Francisco, Environ. Sci. Technol. 33 (1999) 4102.

    Google Scholar 

  29. N. Couté and J.T. Richardson, Appl. Catal. B 26 (2000) 265.

    Google Scholar 

  30. D.C. Kim and S.K. Ihm, Environ. Sci. Technol. 35 (2001) 222.

    Google Scholar 

  31. S. Krishnamoorthy, J.A. Rivas and M.D. Amiridis, J. Catal. 193 (2000) 264.

    Google Scholar 

  32. S. Uludag-Demirer and A. Bowers, Environ. Sci. Technol. 34 (2000) 4407.

    Google Scholar 

  33. C. Su and R.W. Puls, Environ. Sci. Technol. 33 (1999) 163.

    Google Scholar 

  34. F.X.M. Casey, S.K. Ong and R. Horton, Environ. Sci. Technol. 34 (2000) 5023.

    Google Scholar 

  35. Z. Li, H.K. Jones, R.S. Bowman and R. Helferich, Environ. Sci. Technol. 33 (1999) 4326.

    Google Scholar 

  36. C. Scheutz, K. Winther and P. Kjeldsen, Environ. Sci. Technol. 34 (2000) 2557.

    Google Scholar 

  37. T. Dombek, E. Dolan, J. Schultz and D. Klarup, Environ. Pollut. 111 (2001) 21.

    Google Scholar 

  38. Y.-H. Kim and E.R. Carraway, Environ. Sci. Technol. 34 (2000) 2014.

    Google Scholar 

  39. F.-W. Chuang, R.A. Larson and M.S. Wessman, Environ. Sci. Technol. 29 (1995) 2460.

    Google Scholar 

  40. G.V. Lowry and M. Reinhard, Environ. Sci. Technol. 33 (1999) 1905.

    Google Scholar 

  41. M. Makkee, A. Wiersma, E.J.A.X. van der Sandt, H. van Bekkum and J.A. Moulijn, Catal. Today 55 (2000) 125.

    Google Scholar 

  42. R.M. Rioux, C.D. Thompson, N. Chen and F.H. Ribeiro, Catal. Today 62 (2000) 269.

    Google Scholar 

  43. V.Y. Borovkov, F. Lonyi, V.I. Kovalchuk and J.L. d'Itri, J. Phys. Chem. B 104 (2000) 5603.

    Google Scholar 

  44. F.J. Berry, L.E. Smart, P.S. Sai Prasad, N. Lingaiah and P.K. Rao, Appl. Catal. A 204 (2000) 191.

    Google Scholar 

  45. M.A. Aramendiá, V. Boráu, I.M. Garciá, C. Jiménez, F. Lafont, A. Marinas, J.M. Marinas and F.J. Urbano, J. Catal. 187 (1999) 392.

    Google Scholar 

  46. V.A. Yakovlev, V.V. Terskikh, V.I. Simagina and V.A. Likholobov, J. Mol. Catal. A 153 (2000) 231.

    Google Scholar 

  47. P.V. Kamat, Chem. Rev. 93 (1993) 267.

    Google Scholar 

  48. M.A. Fox and M.T. Dulay, Chem. Rev. 93 (1993) 341.

    Google Scholar 

  49. A. Mills and S.L. Hunte, J. Photochem. Photobiol. A 108 (1997) 1.

    Google Scholar 

  50. G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann and T. Sawitowski, Chem. Soc. Rev. 28 (1999) 179.

    Google Scholar 

  51. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1 (2000) 1.

    Google Scholar 

  52. A. Henglein, Chem. Rev. 89 (1989) 1861.

    Google Scholar 

  53. A. Hagfeldt and M. Grätzel, Chem. Rev. 95 (1995) 49.

    Google Scholar 

  54. S. Yanagida, M. Yoshiya, T. Shiragami, C. Pac, H. Mori and H. Fujita, J. Phys. Chem. 94 (1990) 3104.

    Google Scholar 

  55. H. Yin, Y. Wada, T. Kitamura and S. Yanagida, Environ. Sci. Technol. 35 (2001) 227.

    Google Scholar 

  56. S. Yanagida, S. Kanemoto, K. Ishibara, Y. Wada, T. Sakata and H. Mori, Bull. Chem. Soc. Jpn. 70 (1997) 2063.

    Google Scholar 

  57. M. Kanemoto, T. Shiragami, C. Pac and S. Yanagida, J. Phys. Chem. 96 (1992) 3521.

    Google Scholar 

  58. T. Shiragami, C. Pac and S. Yanagida, Chem. Commun. (1989) 831.

  59. J. Moser and M. Grätzel, J. Am. Chem. Soc. 105 (1983) 6547.

    Google Scholar 

  60. T. Shiragami, H. Ankyu, S. Fukami, C. Pac, S. Yanagida, H. Mori and H. Fujita, J. Chem. Soc. Faraday Trans. 88 (1992) 1055.

    Google Scholar 

  61. T. Shiragami, S. Fukami, Y. Wada and S. Yanagida, J. Phys. Chem. 97 (1993) 12882.

    Google Scholar 

  62. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, T. Okada and H. Kobayashi, J. Phys. Chem. B 101 (1997) 8270.

    Google Scholar 

  63. M. Kanemoto, H. Hosokawa, Y. Wada, K. Murakoshi, S. Yanagida, T. Sakata, H. Mori, M. Ishikawa and H. Kobayashi, J. Chem. Soc. Faraday Trans. 92 (1996) 2401.

    Google Scholar 

  64. P.K. Freeman and N. Ramnath, J. Org. Chem. 56 (1991) 3646.

    Google Scholar 

  65. Y. Wada, H. Yin, T. Kitamura and S. Yanagida, Chem. Commun. (1998) 2683.

  66. P.K. Freeman, R. Srinivasa, J.A. Campbell and M.L. Deinzer, J. Am. Chem. Soc. 108 (1986) 5531.

    Google Scholar 

  67. P.K. Freeman and N. Ramnath, J. Org. Chem. 53 (1988) 148.

    Google Scholar 

  68. H. Yin, Y. Wada, T. Kitamura and S. Yanagida, Chem. Lett. (2001) 334.

  69. J. Theurich, M. Lindner and D.W. Bahnemann, Langmuir 12 (1996) 6368.

    Google Scholar 

  70. U. Stafford, K.A. Gray and P.V. Kamat, J. Catal. 167 (1997) 25.

    Google Scholar 

  71. U. Stafford, K.A. Gray and P.V. Kamat, Res. Chem. Intermed. 23 (1997) 355.

    Google Scholar 

  72. A.D. Konstantinov, A.M. Johnston, B.J. Cox, J.R. Petrulis, M.T. Orzechowski, N.J. Bunce, C.H.M. Tashiro and B. G. Chittim, Environ. Sci. Technol. 34 (2000) 143.

    Google Scholar 

  73. W. Choi, S.J. Hong, Y.S. Chang and Y. Cho, Environ. Sci. Technol. 34 (2000) 4810.

    Google Scholar 

  74. T. Tao, J.J. Yang and G.E. Maciel, Environ. Sci. Technol. 33 (1999) 74.

    Google Scholar 

  75. D.E. Clark, W.H. Sutton and D.A. Lewis, in: Microwaves: Theory and Application in Materials Processing IV (The American Ceramic Society: 735 Ceramic Place, Westerville, Ohio 43081, 1997) p. 41.

    Google Scholar 

  76. H.M. Kingston and S.J. Haswell, in: Microwave-Enhanced Chemistry, Fundamentals, Sample Preparation, and Applications (The American Chemical Society: Washington, DC, 1997) p. 3.

    Google Scholar 

  77. H.M. Kingston and L.B. Jassie, in: Introduction to Microwave Sample Preparation, Theory and Practice (The American Chemical Society: Washington, DC, 1998) p. 1.

    Google Scholar 

  78. S.A. Galema, Chem. Soc. Rev. 26 (1997) 233.

    Google Scholar 

  79. C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead and D.M.P. Mingos, Chem. Soc. Rev. 27 (1998) 213.

    Google Scholar 

  80. M. Larhed, M. Hoshino, S. Hadida, D.P. Curran and A.J. Hallberg, Org. Chem. 62 (1997) 5583.

    Google Scholar 

  81. G.L. Li and G.H. Wang, Nanostructured Mater. 11 (1999) 663.

    Google Scholar 

  82. P.S.S. Prasad, N. Lingaiah, S. Chandrasekhar, K.S.R. Rao, P.K. Rao, K.V. Raghavan, F.J. Berry and L.E. Smart, Catal. Lett. 66 (2000) 201.

    Google Scholar 

  83. B.K. Banik, K.J. Barakat, D.R. Wagle, M.S. Manhas and A.K. Bose, J. Org. Chem. 64 (1999) 5746.

    Google Scholar 

  84. R. Varma, S.P. Nandi and J.D. Katz, Mat. Res. Soc. Symp. Proc. 189 (1991) 67.

    Google Scholar 

  85. R. Varma and S.P. Nandi, Microwaves (1990) 467.

  86. R.A. Abramovitch, B.Z. Huang, M. Davis and L.C. Peters, Chemosphere 37 (1998) 1427.

    Google Scholar 

  87. R.A. Abramovitch, B.Z. Huang, D.A. Abramovitch and J.G. Song, Chemosphere 38 (1999) 2227.

    Google Scholar 

  88. Y. Wada, H. Yin, T. Kitamura and S. Yanagida, Chem. Lett. (2000) 632.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, Y., Yin, H. & Yanagida, S. Environmental Remediation Using Catalysis Driven Under Electromagnetic Irradiation. Catalysis Surveys from Asia 5, 127–138 (2002). https://doi.org/10.1023/A:1015171801455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015171801455

Navigation