Skip to main content
Log in

Molecular Modeling Study of Diltiazem Mimics at L-Type Calcium Channels

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. A theoretical study was performed to generate a pharmacophore model for chemically diverse structures that specifically interact with the diltiazem binding site of L-type calcium channels.

Methods. Via molecular mechanics and quantum chemical methods solvation energies, logP values, conformational and electronic features of classical l,5-benzothiazepin-4(5H)-one (BTZ, e.g., diltiazem), 1-benzazepin-2-one (BZ), pyrrolo [2,1-d][1,5 ]benzothiazepine, pyrrolo[2,l-c][l,4]benzothiazine, and benzobicyclo[2.2.2]octyl amines derivatives were determined. Furthermore, the molecular electrostatic potentials (MEPs) and common interaction fields derived from use of the GRID programme were compared.

Results. This yielded a pharmacophore model with three crucial pharmacophoric characteristics, (1) two aromatic ring systems in a distance of about 6.7 Å, (2) a basic side chain with pKa in the physiological range, and (3) a 4′-methoxy moiety. In addition, a strong negative MEP in 4-position (carbonyl oxygen) and hydrophobic electron-rich features in the position equivalent to the sulphur atom of BTZ derivatives were explored to be favourable for receptor binding and calcium antagonistic effect. Moreover, the stabilizing effect of substituents in 3-position of BZs on the bioactive 'M' twist-boat conformation of the heptagonal ring could be demonstrated by molecular dynamics simulations.

Conclusions. Based on these molecular descriptors, the quinazolinone derivative MCI-176 is predicted to be a potential ligand of the diltiazem binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Rampe and D. J. Triggle. New ligands for L-type Ca2+ channels. Trends Pharmacol. Sci. 11:112–115 (1990).

    Google Scholar 

  2. H. Glossmann and J. Striessnig. Molecular properties of calcium channels. Rev. Physiol. Biochem. Pharmacol. 114:1–105 (1990).

    Google Scholar 

  3. J. Striessnig, M. Grabner, J. Mitterdorfer, S. Hering, M. J. Sinnegger, and H. Glossmann. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol. Sci. 19:108–115 (1998).

    Google Scholar 

  4. E. Anselmi, G. Fayos, R. Blasco, L. Candenas, D. Cortes, and M. P. D'Ocon. Selective inhibition of calcium entry induced by benzylisoquinolines in rat smooth muscle. J. Pharm. Pharmacol. 44:337–343 (1992).

    Google Scholar 

  5. D. Cortes, M. Y. Torrero, M. P. D'Ocon, M. L. Candenas, A. Cavé, and A. H. A. Hadi. Norstephalagine et atherospermidine, deux aporphines d'artabotrys maingayi relaxantes du muscle lisse. J. Nat. Prod. 53:503–508 (1990).

    Google Scholar 

  6. M. D. Ivorra, C. Lugnier, C. Schott, M. Catret, M. A. Noguera, E. Anselmi, and M. P. D'Ocon. Multiple actions of glaucine on cyclic nucleotide phosphodiesterases, α1-adrenoceptor and benzothiazepine binding site at calcium channel. Br. J. Pharmacol. 106:387–394 (1992).

    Google Scholar 

  7. M. D. Ivorra, S. Chuliá, C. Lugnier, and M. P. D'Ocon. Selective action of two aporphines at α1-adrenoceptors and potential-operated Ca2+ channels. Eur. J. Pharmacol. 231:165–174 (1993).

    Google Scholar 

  8. R. A. Sheehan-Dare and M. J. D. Goodfield. Widespread cutaneous vasculitis associated with diltiazem. Postgrad. Med. J. 64:467–468 (1988).

    Google Scholar 

  9. M. Lahav and R. Arav. Diltiazem and thrombocytopenia. Ann. Int. Med. 110:327 (1989).

    Google Scholar 

  10. P. C. Waller and W. H. W. Inman. Diltiazem and heart block. Lancet 1:617 (1989).

    Google Scholar 

  11. R. S. Dick and S. S. Barold. Diltiazem-induced parkinsonism. Am. J. Med. 87:95–96 (1989).

    Google Scholar 

  12. H. Shallcross, S. P. G. Padley, M. J. Glynn, and D. D. Gibbs. Fatal renal and hepatic toxicity after treatment with diltiazem. Br. Med. J. 295:1236–1237 (1987).

    Google Scholar 

  13. Cambridge Structural Database, Cambridge Crystallographic Data Center, Cambridge, U.K.

  14. F. H. Allen, O. Kennard, and D. G. Watson. Crystallographic databases: Search and retrieval information from the Cambridge Structural Database. Struct. Correl. 1:71–110 (1994).

    Google Scholar 

  15. D. M. Floyd, S. D. Kimball, J. Krapcho, J. Das, C. F. Turk, R. V. Moquin, M. W. Lago, K. J. Duff, V. G. Lee, R. E. White, R. E. Ridgewell, S. Moreland, R. J. Brittain, D. E. Normandin, S. A. Hedberg, and G. G. Cucinotta. Benzazepinone calcium channel blockers. 2. Structure-activity and drug metabolism studies leading to potent antihypertensive agents. Comparison with benzothiazepines. J. Med. Chem. 35:756–772 (1992).

    Google Scholar 

  16. S. D. Kimball, D. M. Floyd, J. Das, J. T. Hunt, J. Krapcho, G. Rovnyak, K. J. Duff, V. G. Lee, R. V. Moquin, C. F. Turk, S. A. Hedberg, S. Moreland, R. J. Brittain, D. M. McMullen, D. E. Normandin, and G. G. Cucinotta. Benzazepinone calcium channel blockers. 4. Structure-activity overview and intracellular binding site. J. Med. Chem. 35:780–793 (1992).

    Google Scholar 

  17. Y. Cheng and W. H. Prusoff. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108 (1973).

    Google Scholar 

  18. G. Campiani, I. Fiorini, M. P. De Filippis, S. M. Ciani, A. Garofalo, V. Nacci, G. Giorgi, A. Sega, M. Botta, A. Chiarini, R. Budriesi, G. Bruni, M. R. Romeo, C. Manzoni, and T. Mennini. Cardiovascular characterization of pyrrolo[2, 1-d][1, 5]benzothiazepine derivatives binding selectively to the peripheral-type benzodiazepine receptor (PBR): From dual PBR affinity and calcium antagonist activity to novel and selective calcium entry blockers. J. Med. Chem. 39:2922–2938 (1996).

    Google Scholar 

  19. G. Campiani, A. Garofalo, I. Fiorini, M. Botta, V. Nacci, A. Tafi, A. Chiarini, R. Budriesi, G. Bruni, and M. R. Romeo. Pyrrolo[2, 1-c][1, 4]benzothiazines: Synthesis, structure-activity relationships, molecular modeling studies, and cardiovascular activity. J. Med. Chem. 38:4393–4410 (1995).

    Google Scholar 

  20. J. C. Barrish, S. H. Spergel, S. Moreland, G. Grover, S. A. Hedberg, A. T. Pudzianowski, J. Z. Gougoutas, and M. F. Malley. Conformationally constrained calcium channel blockers: Novel mimics of 1-benzazepin-2-ones. Bioorg. Med. Chem. 1:309–325 (1993).

    Google Scholar 

  21. SYBYL v. 6.5, Tripos Associates, Inc., St. Louis, MO, U.S.A.

  22. D. J. Mazzo, C. L. Obetz, and J. Shuster. Diltiazem hydrochloride. Anal. Profiles Drug Subst. Excipients 23:53–98 (1994).

    Google Scholar 

  23. IXGROS, part of Ph.D. Thesis, Sippl, W., Düsseldorf, Germany, 1997.

  24. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107:3902–3909 (1985).

    Google Scholar 

  25. T. A. Halgren. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94*. J. Comput. Chem. 17:490–519 (1996).

    Google Scholar 

  26. GRID, v. 16, Molecular Discovery Ltd., Oxford, U.K.

  27. SPARTAN 4.1.1, Wavefunction, Irvine, CA, U.S.A.

  28. S. Ikeda, J.-I. Oka, and T. Nagao. Effects of four diltiazem stereoisomers on binding of d-cis-[3H]diltiazem and (+)-[3H]PN200110 to rabbit T-tubule calcium channels. Eur. J. Pharmacol. 208:199–205 (1991).

    Google Scholar 

  29. M. S. Searle and D. H. Williams. The cost of conformational order: Entropy changes in molecular associations. J. Am. Chem. Soc. 11:10690–10697 (1992).

    Google Scholar 

  30. A. J. Doig and D. H. Williams. Binding energy of an amide-amide hydrogen bond in aqueous and nonpolar solvents. J. Am. Chem. Soc. 114:338–343 (1992).

    Google Scholar 

  31. V. Kettmann and H.-D. Höltje. Mapping of the benzothiazepine binding site on the calcium channel, Quant. Struct.-Act. Relat. 17:91–101 (1998).

    Google Scholar 

  32. G. W. Zamponi. Antagonist binding sites of voltage-dependent calcium channels. Drug Dev. Res. 42:131–143 (1997).

    Google Scholar 

  33. D. Horii and A. Ishibashi. Coronary dilator effect of MCI-176, a new calcium channel blocker, in dogs. Tohoku J. Exp. Med. 150:101–102 (1986).

    Google Scholar 

  34. A. Ishibashi and D. Horii. Effect of MCI-176, a new calcium antagonist, on the calcium induced contraction of isolated porcine coronary arteries. Jpn. J. Pharmacol. 43:234–236 (1987).

    Google Scholar 

  35. T. Ishibashi, M. Nakazawa, and S. Imai. Effect of MCI-176, a new calcium channel blocker, on large and small coronary arteries in dogs. Cardiovasc. Res. 23:295–302 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Jürgen Schleifer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleifer, KJ., Tot, E. Molecular Modeling Study of Diltiazem Mimics at L-Type Calcium Channels. Pharm Res 16, 1506–1513 (1999). https://doi.org/10.1023/A:1015037800903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015037800903

Navigation