Skip to main content
Log in

Acidity of Zeolite Y—Probed by Adsorption of 1-Naphthylamine and Studied by Laser-Induced Fluorescence Spectroscopy

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Proton transfer reactions between zeolite Y surface and 1-naphthylamine (NA) in the ground and excited states have been studied by laser-induced picosecond spectroscopy. The acidic form of zeolite Y readily protonates NA in the ground state. At low acid strength of the zeolite the excited state of the protonated NA transfers back the proton to the zeolite surface as indicated by the fluorescence spectra. At high acid strength of the zeolite the fluorescence comes from the protonated form of NA and from an adduct “X” previously found in highly concentrated HClO4 solutions. The concentrations of the protonated NA and X increase with the reduction in the unit cell size. The presence of these species is discussed in terms of the next nearest neighbor “NNN” theory of zeolite Y acidity and the role of the non-framework aluminum. The acidity of the zeolite is estimated, based on the fluorescence lifetimes of X, to vary from 3.7 to 17 M HClO4 depending on the unit cell size. Low loading levels of NA in the zeolite pores are best in studying the proton transfer reaction and for the estimation of the surface acidity of zeolite Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. van Santen and G.J. Kramer, Chem. Rev. 95 (1995) 637.

    Google Scholar 

  2. A. Corma, Chem. Rev. 97 (1997) 2373.

    Google Scholar 

  3. E.W. Hansen, F. Courivaud, A. Carlson, S. Kolboe and M. Stocker, Micropor. Mesopor. Mater. 22 (1997) 309.

    Google Scholar 

  4. S. Biz and M.L. Occelli, Catal. Rev. Sci. Eng. 40 (1998) 329.

    Google Scholar 

  5. Mirodatus and D. Bathomeuf, J. Catal. 93 (1985) 246.

    Google Scholar 

  6. A. Corma, H. Garcia, S. Iborra and J. Primo, J. Catal. 120 (1989) 78.

    Google Scholar 

  7. C.V. McDaniel and P.J. Maher, in: Conference on Molecular Sieves (Society of Chemical Industry, London, 1967) p. 186.

    Google Scholar 

  8. G.T. Kerr, in: Molecular Sieves, Adv. Chem. Ser., Vol. 121, eds. W.M. Meier and J.B. Uytterhoeven (1973) p. 219.

  9. P.A. Jalil, M.A. Al-Daous, A.A. Al-Arfaj, A.M. Al-Amer, J. Beltramini and S.A.I. Barri, Appl. Catal. A 207 (2001) 159.

    Google Scholar 

  10. G.T. Kerr, J. Phys. Chem. 73 (1969) 2780.

    Google Scholar 

  11. G.W. Skeels and E.M. Flanigen, in: Zeolite Synthesis, Adv. Chem. Ser., Vol. 435 (1989) p. 420.

  12. L.A. Pine, P.J. Maher and W.A. Wachter, J. Catal. 85 (1984) 466.

    Google Scholar 

  13. A.A. Eremenko, F.M. Bobonitz, M.V. Cost, M.A. Pionkovskaya, M.Yu. Sakhnovskii and I.E. Niemark, Opt. Spektrosk. 35 (1973) 224.

    Google Scholar 

  14. B.H. Bartez and N.J. Turro, J. Photochem. 24 (1984) 201.

    Google Scholar 

  15. P. Hite, R. Krasnansky and J.K. Thomas, J. Phys. Chem. 90 (1986) 5295.

    Google Scholar 

  16. J.K. Thomas, J. Phys. Chem. 91 (1987) 267.

    Google Scholar 

  17. J.K. Thomas, Chem. Rev. 93 (1993) 301.

    Google Scholar 

  18. X. Liu, K.K. Iu and J.K. Thomas, J. Phys. Chem. 93 (1989) 4120.

    Google Scholar 

  19. X. Liu, K.K. Iu and J.K. Thomas, J. Phys. Chem. 98 (1994) 7877.

    Google Scholar 

  20. B.H. Milosavljevic and J.K. Thomas, J. Phys. Chem. 92 (1988) 2997.

    Google Scholar 

  21. H. Shizuka, Acc. Chem. Res. 18 (1985) 141.

    Google Scholar 

  22. A. Corma, M.S. Grande, V. Gonzales Alfaro and A.V. Orchilles, J. Catal. 159 (1996) 375.

    Google Scholar 

  23. S.A. Rutten and J.K. Thomas, J. Phys. Chem. B 102 (1998) 598.

    Google Scholar 

  24. N.J. Turro, Pure Appl. Chem. 58 (1986) 1219.

    Google Scholar 

  25. V. Ramamurthy, J. Am. Chem. Soc. 116 (1994) 1345.

    Google Scholar 

  26. J.C. Scaiano, N.C. De Locas, J. Andraos and H. Garcia, Chem. Phys. Lett. 233 (1995) 5.

    Google Scholar 

  27. S. Corrent, P. Hahn, G. Pohlers, T.G. Connoly, G.C. Scaiano and H. Garcia, J. Phys. Chem. B 102 (1998) 5852.

    Google Scholar 

  28. M. Alvaro, H. Garcia, S. Corrent and J.C. Scaiano, J. Phys. Chem. B 102 (1998) 7530.

    Google Scholar 

  29. I.F.J. Vankelecom, D. Depre, S.D. Beukelaeur and J.B. Uytterhoeven, J. Phys. Chem. B 99 (1995) 13193.

    Google Scholar 

  30. I.F.J. Vankelecom, C. Dotremont, M. Morbe and J.B. Uytterhoeven, J. Phys. Chem. B 101 (1997) 2154.

    Google Scholar 

  31. C. Dotremont, I.F.J. Vankelecom, M. Morbe and J.B. Uytterhoeven, J. Phys. Chem. B 101 (1997) 2160.

    Google Scholar 

  32. A.A. El-Rayyes, H.P. Perzanowski, S.A.I. Barri and U.K.A. Klein, J. Phys. Chem., accepted.

  33. D.W. Breck and E.M. Flanigen, in: Conference on Molecular Sieves (Society of Chemical Industry, London, 1967) p. 47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Rayyes, A.A., Perzanowski, H., Klein, U.K. et al. Acidity of Zeolite Y—Probed by Adsorption of 1-Naphthylamine and Studied by Laser-Induced Fluorescence Spectroscopy. Catalysis Letters 78, 161–170 (2002). https://doi.org/10.1023/A:1014937724766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014937724766

Navigation