Skip to main content
Log in

Analysis of NMR Adsorption Isotherms of Zeolite ZSM-5: Adsorption Profiles Derived from the Pressure and Temperature Dependences of 129Xe NMR Chemical Shift and Signal Intensity

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

129Xe NMR spectroscopy of nanomaterials, such as zeolites, can provide valuable information on the nanostructure and physicochemical properties of adsorption. In the present study the pressure and temperature dependences of the 129Xe NMR chemical shift and the signal intensity were investigated in detail with a zeolite ZSM-5. The pressure dependence of the signal intensity at constant temperature was analyzed based on the Langmuir and Dubinin-Radushkevich (D-R) models, from which the thermodynamic parameters and energetic profiles of adsorption were obtained together with information concerning the nanospace size. From this isotherm analysis the coverage, θ, was calculated and used for isotherm analysis of the chemical shift. The θ dependence of the chemical shift was successfully fitted by an exponential function, and the results were discussed in relation to the chemical shift at zero coverage, that at full coverage and the curvature of the exponential function. The chemical shift data reported with the zeolites NaA and KA, where separated signals were observed for the different number of encapsulated Xe atoms in the α cage, were analyzed and discussed collectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fraissard and T. Ito, Zeolites, 1988, 8, 350.

    Article  CAS  Google Scholar 

  2. J. Demarquay and J. Fraissard, Chem. Phys. Lett., 1987, 136, 314.

    Article  CAS  Google Scholar 

  3. E. Weiland, M.-A. Springuel-Huet, A. Nossov, and A. Gedeon, Micro. Mesopor. Mater., 2016, 225, 41.

    Article  CAS  Google Scholar 

  4. D. Wisser and M. Hartmann, Adv. Mater. Interf., 2021, 8, 2001266.

    Article  Google Scholar 

  5. T. Meersmann and E. Brunner (ed.), “Hyperpolarized Xenon-129 Magnetic Resonance”, 2015, Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  6. Q. J. Chen and J. Fraissard, J. Phys. Chem., 1992, 96, 1809.

    Article  CAS  Google Scholar 

  7. V. V. Terskikh, I. L, Mudrakowskii, and V. M. Mastikhin, J. Chem. Soc. Faraday Trans., 1993, 89, 4239.

    Article  CAS  Google Scholar 

  8. F. Cros, J.-P. Korb, and L. Malier, Langmuir, 2000, 16, 10193.

    Article  CAS  Google Scholar 

  9. K. Bartik, P. Choquet, A. Constantinesco, G. Duhamel, J. Fraissard, J. N. Hyacinthe, J. Jokisaari, E. Locci, T. J. Lowery, M. Luhmer, T. Meersmann, I. L. Moudrakovski, G. E. Pavlovskaya, K. L. Pierce, A. Pines, J. A. Ripmeester, V. V. Telkki, and W. S. Veeman, Actualite Chimique, 2005, 287, 16.

    CAS  Google Scholar 

  10. T. Ueda, H. Omi, T. Yukioka, and T. Eguchi, Bull. Chem. Soc. Jpn., 2006, 79, 237.

    Article  CAS  Google Scholar 

  11. H. Omi, T. Ueda, N. Kato, K. Miyakubo, and T. Eguchi, Phys. Chem. Chem. Phys., 2006, 8, 3857.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Kawata, Y. Adachi, S. Haga, J. Fukutomi, H. Imai, A. Kimura and H. Fujiwara, Anal. Sci., 2007, 23, 1397.

    Article  CAS  PubMed  Google Scholar 

  13. K. Trepte, S. Schwalbe, J. Schaber, S. Krause, I. Senkovska, S. Kaskel, E. Brunner, J. Kortus, and G. Seifert, Phys. Chem. Chem. Phys., 2018, 20, 25039.

    Article  CAS  PubMed  Google Scholar 

  14. J. Fukutomi, Y. Adachi, A. Kaneko, A. Kimura, and H. Fujiwara, J. Incl. Phenom. Macrocyc. Chem., 2007, 58, 115.

    Article  CAS  Google Scholar 

  15. S. Fujiyama, S. Seino, N. Kamiya, K. Nishi, K. Yoza and Y. Yokomori, Phys. Chem. Chem. Phys., 2014, 16, 15839.

    Article  CAS  PubMed  Google Scholar 

  16. C. J. Jameson, A. K. Jameson, R. Gerald II, and A. C.. de Dios, J. Chem. Phys., 1992, 96, 1676.

    Article  CAS  Google Scholar 

  17. M. M. Dubinin, Chem. Rev., 1960, 60, 235.

    Article  CAS  Google Scholar 

  18. K. Kawazoe, V. A. Astakov, T. Kawai, and Y. Eguchi, Kagaku Kogaku, 1971, 35, 1006.

    Article  CAS  Google Scholar 

  19. M. Aoshima, K. Fukasawa, and K. Kaneko, J. Colloid Interface Sci., 2000, 222, 179.

    Article  CAS  PubMed  Google Scholar 

  20. C. J. Jameson, A. K. Jameson, R. Gerald II, and H. Lim, J. Chem. Phys., 1995, 103, 8811.

    Article  CAS  Google Scholar 

  21. H. Saito, S. Inagaki, K. Kojima, Q. Han, T. Yabe, S. Ogo, Y. Kubota, and Y. Sekine, Appl. Catal. A, Gen., 2018, 549, 76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number, JP21K18980.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideaki Fujiwara or Atsuomi Kimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, H., Imai, H., Adachi, Y. et al. Analysis of NMR Adsorption Isotherms of Zeolite ZSM-5: Adsorption Profiles Derived from the Pressure and Temperature Dependences of 129Xe NMR Chemical Shift and Signal Intensity. ANAL. SCI. 37, 1803–1810 (2021). https://doi.org/10.2116/analsci.21P202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P202

Keywords

Navigation