Skip to main content
Log in

Adaptive Feedback Linearizing Control of Proper Orthogonal Decomposition Nonlinear Flow Models

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper treats the question of feedback linearizing control oftwo-dimensional incompressible, unsteady wake flow. For definiteness,flow past a circular cylinder is considered, but the design approachpresented here is applicable to other flow control problems. Twofinite-dimensional lower-order models based on Proper OrthogonalDecomposition (POD) of dimension N with N actuators are considered.Models I and II are obtained using control function and penalty functionmethods, respectively. Control action can be achieved by a combinationof suction, injection, and synthetic jets. For the design ofcontrollers, it is assumed that the system matrices of the POD modelsare unknown. Nonlinear adaptive control systems for the two models arederived. For model I, nontrivial zero-error dynamics exists, which playa key role in the stability of the closed-loop system. But for model II,global adaptive trajectory control is achieved. In the closed-loopsystem, the mode amplitudes asymptotically follow the referencetrajectories. Simulation results for a 4-mode POD model obtained usingthe penalty function method are presented. These results show that inthe closed-loop system, unsteadiness in the mode amplitudes can besuppressed in spite of large uncertainties in the flow model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou, L. S. and Ravindran, S. S., 'A penalized Neuman control approach for solving an optimal Dirichlet control problem for Navier Stokes equations', SIAM Journal on Control and Optimization 36, 1997, 1795-1814.

    Google Scholar 

  2. Ito, K. and Ravindran, S. S., 'A reduced order method for simulation and control of fluid flows', Journal of Computational Physics 143, 1998, 403-425.

    Google Scholar 

  3. Burns, J. A. and Ou, Y. R., 'Feedback control of the driven cavity problem using LQR design,' in Proceedings of the 33rd IEEE Conference on Decision and Control, FL, IEEE, New York, 1994, pp. 289-284.

    Google Scholar 

  4. Joslin, R. D., Gunzburger, M. D., Nicolaides, R., Erlebacher, G., and Husaini, M. Y., 'A self-contained, automated methodology for optimal flow control validated for transition delay', AIAA Journal 35, 1997, 816-824.

    Google Scholar 

  5. Sritharan, S. S., 'An optimal control problem in exterior hydrodynamics', Proceedings of the Royal Society of Edinburgh 121A, 1992, 5-32.

    Google Scholar 

  6. Seifert, A, Darbi, A., and Wyganski, I., 'Delay of airfoil stall by periodic excitation', Journal of Aircraft 33, 1996, 691-698.

    Google Scholar 

  7. Modi, V. J., Mokhtarian, F., Fernando, M., and Yokomizo, T., 'Moving surface boundary-layer control as applied to two-dimensional airfoils', Journal of Aircraft 28, 1991, 104-112.

    Google Scholar 

  8. Roussopoulos, K., 'Feedback control of vortex shedding at low Reynolds number', Journal of Fluid Mechanics 248, 1993, 267-296.

    Google Scholar 

  9. Seifert, A. and Pack, L. G., 'Oscillatory control of separation at high Reynolds numbers', in 36th Aerospace Sciences & Exhibit, Reno, NV, 1998, AIAA Paper 98-0214.

    Google Scholar 

  10. Amitay, M., Smith, B. L., and Glezer, A., 'Aerodynamic flow control using synthetic jet technology', in 36th Aerospace Sciences & Exhibit, Reno, NV, 1998, AIAA Paper 98-0208.

    Google Scholar 

  11. Rediniotis, O. K., Ko, J., Yue, X., and Kurdila, A.J., 'Synthetic jets, their reduced order modeling and applications to flow control', in 37th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1999, AIAA Paper 99-1000.

    Google Scholar 

  12. Karhunen, K., 'Zur spectral Theorie stochastischer Prozesse', Annales Academiae Scientiarum Fennicae, Series A-I (Mathematica-Physica) 37, 1946.

  13. Loeve M., 'Functiona aleatoire de second ordre', Comptes Rendus Academie des Sciences, 1945.

  14. Aubry, N., Holmes, P., Lumley, J. L., and Stone, E., 'The dynamics of coherent structures in the wall region of a turbulent boundary layer', Journal of Fluid Mechanics 192, 1988, 115-173.

    Google Scholar 

  15. Berkooz, G., Holmes, P., and Lumley, J. L., 'The proper orthogonal decomposition in the analysis of turbulent channel flow', Annual Review of Fluid Mechanics 25, 1993, 539-575.

    Google Scholar 

  16. Rajaee, M, Karlson, S. K. F., and Sirovich, L., 'Low dimensional description of free shear flow coherent structures and their dynamic behavior', Journal of Fluid Mechanics 258, 1994, 1401-1402.

    Google Scholar 

  17. Rempfer, D., 'Investigations of boundary layer transition via Galerkin projections on empirical eigen functions', Physics of Fluids 8, 1996, 175-188.

    Google Scholar 

  18. Ravindran, S. S., 'Proper orthogonal decomposition in optimal control of fluids', NASA/TM-1999-209113.

  19. Graham, W. R., Peraire, J., and Tang, K. Y., 'Optimal control of vortex shedding using low order models, Part I: Open-loop model development', International Journal of Numerical Methods in Engineering 44, 1999, 945-972.

    Google Scholar 

  20. Graham, W. R., Peraire, J., and Tang, K. Y., 'Optimal control of vortex shedding using low order models, Part II: Model based control', International Journal of Numerical Methods in Engineering 44, 1999, 973-990.

    Google Scholar 

  21. Krstic, M., Kanellakopoulos, I., and Kokotovic, P., Nonlinear and Adaptive Control Design, Wiley, New York, 1995.

    Google Scholar 

  22. Isidori, A., Nonlinear Control Systems, Springer-Verlag, Berlin, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.N., Myatt, J.H., Addington, G.A. et al. Adaptive Feedback Linearizing Control of Proper Orthogonal Decomposition Nonlinear Flow Models. Nonlinear Dynamics 28, 71–81 (2002). https://doi.org/10.1023/A:1014936903942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014936903942

Navigation