Skip to main content
Log in

Additivity of Sound Velocity in Binary Liquid Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ideality and additivity of sound velocity in liquid mixtures are discussed. The methods of calculation of deviations of sound velocity from theoretically predicted values are analyzed using literature data for 24 different binary liquid systems. Calculations of such deviations, assuming linearity with mole fraction of a component, were found to be wrong. It is also shown that the Nomoto relation predicting the sound velocity in liquid mixtures yields results similar to those of the equation of Ernst et al., while the Van Dael model often fails. The validity of Rao's hypothesis on additivity of molar sound velocities (Rao constant) has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. J. Flory, J. Amer. Chem. Soc. 87, 1833 (1956).

    Google Scholar 

  2. A. Abe and P. J. Flory, J. Amer. Chem. Soc. 87, 1838 (1956).

    Google Scholar 

  3. I. G. Mikhailov, N. A. Solovyev, and J. P. Syrnikov, in “Osnovy Molekularnoy Akustiki” (Izd. Nauka, Moscow, 1964).

    Google Scholar 

  4. See, for example, K. Seshadri, N. Prabhakara Rao, and K. C. Ready, Z. Phys. Chem. Neue Folge 89, 108 (1974). (Another, and more recent, example is Ref. 25.)

    Google Scholar 

  5. I. Prigogine and R. Defay, in “Chemische Thermodynamik” (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1962).

    Google Scholar 

  6. W. Schaaffs, in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Group II, Vol. 5, (Molecular Acoustics), K.-H. Hellwege ed. (Springer-Verlag, Berlin, 1967).

    Google Scholar 

  7. W. Van Dael, in Thermodynamic Properties and Velocity of Sound, (Butterworths, London, 1975).

    Google Scholar 

  8. R. Rao, Indian J. Phys. 14, 109 (1940).

    Google Scholar 

  9. R. Rao, J. Chem. Phys. 9, 682 (1941).

    Google Scholar 

  10. O. Nomoto, J. Chem. Phys. 21, 950 (1953).

    Google Scholar 

  11. O. Nomoto, J. Phys. Soc. Jpn. 13, 1528 (1958).

    Google Scholar 

  12. S. Ernst, J. Glinski, and B. Jezowska-Trzebiatowska, Acta Phys. Polon. A55, 501 (1979).

    Google Scholar 

  13. G. Natta and M. Baccareda, Atti Acad. Naz. Lincei 4, 360 (1948).

    Google Scholar 

  14. A. D' Aprano, A. Capalbi, M. Iammarino, V. Mauro, A. Princi, and B. Sesta, J. Solution Chem. 24, 227 (1995).

    Google Scholar 

  15. I. Gabrielli and G. Poiani, Ist. Nazl. Ultracustica 122, 234 (1951); cited after Schaaffs (Ref. 7).

    Google Scholar 

  16. G. Ritzoulis, D. Missopolinou, S. Dolulami, and C. Panayiotou, J. Chem. Eng. Data 45, 636 (2000).

    Google Scholar 

  17. A. Ali, K. Tewari, A. K. Nain, and V. Chakravortty, Phys. Chem. Liquids. 38, 459 (2000).

    Google Scholar 

  18. E. Zorebski and A. Zak, Z. Phys. Chem. 210, 223 (1999).

    Google Scholar 

  19. K. Jerie, A., Baranowski, J. Glinski, and J. Przybylski, Acta Phys. Polon. A99, 385 (2001).

    Google Scholar 

  20. A. Rodriguez, J. Canosa, and J. Tojo, J. Chem. Thermodyn. 32, 999 (2000).

    Google Scholar 

  21. J. Canosa, A. Rodriguez, and J. Tojo, J. Chem. Eng. Data 43, 961 (1998).

    Google Scholar 

  22. P. S. Nikam, T. R. Mahale, and M. Hasan, Indian J. Pure Appl. Phys. 37, 92 (1999).

    Google Scholar 

  23. T. Takigawa and K. Tamura, J. Chem. Thermodyn. 32, 1045 (2000).

    Google Scholar 

  24. M. Domingues, C. Lafuente, M. C. Lopez, F. M. Royo, and J. S. Urieta, J. Chem. Thermodynam. 32, 155 (2000).

    Google Scholar 

  25. K. Tamura, A. Osaki, S. Murakami, B. Laurent, and J.-P. E. Grolier, Fluid Phase Equil. 173, 285 (2000).

    Google Scholar 

  26. B. Hawrylak, S. E. Burke, and R. Palepu, J. Solution Chem. 29, 575 (2000).

    Google Scholar 

  27. P. Babu, G. Chandra Sekhar, and N. Prabhakara Rao, Indian J. Pure Appl. Phys. 38, 88 (2000).

    Google Scholar 

  28. W. Marczak, J. Chem. Eng. Data 44, 621 (1999).

    Google Scholar 

  29. P. S. Nikam, V. M. Kapade, and M. Hasan, Indian J. Pure Appl. Phys. 38, 170 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gliński, J. Additivity of Sound Velocity in Binary Liquid Mixtures. Journal of Solution Chemistry 31, 59–70 (2002). https://doi.org/10.1023/A:1014857102265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014857102265

Navigation