Skip to main content
Log in

Maximal Operators Associated with Dirichlet Forms Perturbed by Measures

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

It is shown that a selfadjoint operator defined by a Dirichlet form perturbed by a measure can be described as a suitable maximal operator, for a wide class of measures. The generalized ‘distributional notion’ employed in the description reduces to the usual one for the case of Schrödinger operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S. and Ma, Z.: 'Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms', Osaka J. Math. 29 (1992), 247–265.

    Google Scholar 

  2. Brézis, H. and Browder, F. E.: 'Sur une propriété des espaces de Sobolev', C.R. Acad. Sci. Paris Ser. A 287 (1978), 113–115.

    Google Scholar 

  3. Brézis, H. and Kato, T.: 'Remarks on the Schrödinger operator with singular complex potentials', J. Math. Pures Appl. 58 (1979), 137–151.

    Google Scholar 

  4. Bouleau, N. and Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space, de Gruyter, Berlin, 1991.

    Google Scholar 

  5. Fukushima, M., Oshima, Y., and Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994.

    Google Scholar 

  6. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn, Springer, New York, 1980.

    Google Scholar 

  7. Kato, T.: 'A second look at the essential self-adjointness of Schrödinger operators', in C. P. Enz and J. Mehra (eds.), Physical Reality and Mathematical Description, Reidel, Dordrecht, 1974.

    Google Scholar 

  8. Ma, Z.-M. and Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer, Berlin, 1992.

    Google Scholar 

  9. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis, Academic Press, New York, 1980.

    Google Scholar 

  10. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York, 1978.

    Google Scholar 

  11. Stollmann, P.: 'Smooth perturbations of regular Dirichlet forms', Proc. Amer. Math. Soc. 116 (1992), 747–752.

    Google Scholar 

  12. Stollmann, P. and Voigt, J.: 'A regular potential which is nowhere in L1', Lett. Math. Phys. 9 (1985), 227–230.

    Google Scholar 

  13. Stollmann, P. and Voigt, J.: 'Perturbations of Dirichlet forms by measures', Potential Anal. 5 (1996), 109–138.

    Google Scholar 

  14. Voigt, J.: 'Absorption semigroups, their generators, and Schrödinger semigroups', J. Funct. Anal. 67 (1986), 167–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manavi, A., Voigt, J. Maximal Operators Associated with Dirichlet Forms Perturbed by Measures. Potential Analysis 16, 341–346 (2002). https://doi.org/10.1023/A:1014839528598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014839528598

Navigation