Skip to main content
Log in

Global properties of Dirichlet forms in terms of Green’s formula

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study global properties of Dirichlet forms such as uniqueness of the Dirichlet extension, stochastic completeness and recurrence. We characterize these properties by means of vanishing of a boundary term in Green’s formula for functions from suitable function spaces and suitable operators arising from extensions of the underlying form. We first present results in the framework of general Dirichlet forms on \(\sigma \)-finite measure spaces. For regular Dirichlet forms our results can be strengthened as all operators from the previous considerations turn out to be restrictions of a single operator. Finally, the results are applied to graphs, weighted manifolds, and metric graphs, where the operators under investigation can be determined rather explicitly, and certain volume growth criteria can be (re)derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azencott, R.: Behavior of diffusion semi-groups at infinity. Bull. Soc. Math. France 102, 192–240 (1974)

    MathSciNet  MATH  Google Scholar 

  2. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. De Gruyter Studies in Mathematics, vol. 14. Walter de Gruyter & Co., Berlin (1991)

    Book  MATH  Google Scholar 

  3. Chen, Z.Q.: On reflected Dirichlet spaces. Probab. Theory Relat. Fields 94, 135–162 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z.Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)

    Google Scholar 

  5. Chen, Z.Q., Kim, P., Kumagai, T.: Discrete approximation of symmetric jump processes on metric measure spaces. Probab. Theory Relat. Fields 155, 703–749 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colin de Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators II-metrically non complete graphs. Math. Phys. Anal. Geom. 14, 21–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property, Festschrift on the occasion of the 70th birthday of Shmuel Agmon. J. Anal. Math. 58, 99–119 (1992)

    Article  MathSciNet  Google Scholar 

  8. Dodziuk, J.: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32(5), 703–716 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Folz, M.: Volume growth and stochastic completeness of graphs. Trans. Am. Math. Soc. 366(4), 2089–2119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frank, L., Lenz, D., Wingert, D.: Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory. J. Funct. Anal 266, 4765–4808 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Second Revised and Extended Edition. De Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (2011)

    Google Scholar 

  12. Georgakopoulos, A., Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Graphs of finite measure. J. Math. Pures Appl. 103(5), 1093–1131 (2015). doi:10.1016/j.matpur.2014.10.006

  13. Grigor’yan, A.: On stochastically complete manifolds. Sov. Math. Dokl. 34(2), 310–313 (1987) (Translated from Russian DAN SSSR 290(3), 534–537 (1986))

  14. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, International Press, Boston (2009)

  15. Grigor’yan, A., Huang, X.-P., Masamune, J.: On stochastic completeness of jump processes. Math. Z. 271, 1211–1239 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grigor’yan, A., Masamune, J.: Parabolicity and stochastic completeness of manifolds in terms of Green formula. J. Math. Pures Appl. (9) 100, 607–632 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haeseler, S.: Analysis of Dirichlet forms on graphs. Dissertation, Jena (2013)

  18. Haeseler, S., Keller, M.: Generalized solutions and spectrum for Dirichlet forms on graphs, in [29]

  19. Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.K.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2, 397–432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, X.: Stochastic incompleteness for graphs and weak Omori–Yau maximum principle. J. Math. Anal. Appl. 379(2), 764–782 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, X.: Escape rate of Markov chains on infinite graphs. J. Theor. Probab. 27(2), 634–682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, X.: A note on the volume growth criterion for stochastic completeness of weighted graphs. Potential Anal. 40(2), 117–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jorgensen, P. T., Pearse, E.: Resistance boundaries of infinite networks, in [29]

  24. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. (Crelle’s J.) 666, 189–223 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Keller, M., Lenz, D., Vogt, H., Wojciechowski, R.: Note on basic features of large time behaviour of heat kernels. J. Reine Angew. Math. 708(2015), 73–95 (2015)

  26. Keller, M., Lenz, D., Wojciechowski, R.: Volume growth, spectrum and stochastic completeness of infinite graphs. Math. Z. 274(3–4), 905–932 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuwae, K.: Reflected Dirichlet forms and the uniqueness of Silverstein’s extension. Potential Anal. 16(3), 221–247 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lenz, D., Stollmann, P., Veselic, I.: Irreducible Dirichlet forms and their perturbations (in preparation)

  29. Lenz, D., Sobieczky, F., Woess, W. (eds.): Random Walks, Boundaries and Spectra, Progress in Probability, vol. 64. Birkhäuser, Basel (2011)

    Google Scholar 

  30. Masamune, J., Uemura, T., Wang, J.: On the conservativeness and the recurrence of symmetric jump-diffusions. J. Funct. Anal. 263(12), 3984–4008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schmidt, M.: Global properties of Dirichlet forms on discrete spaces, Diplomarbeit. 522(2017), 1–43 (2017). doi:10.4064/dm738-7-2016

  32. Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Takeda, M.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26(3), 605–623 (1989)

    MathSciNet  MATH  Google Scholar 

  35. Woess, W.: Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  36. Wojciechowski, R.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58, 1419–1441 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wojciechowski, R. K.: Stochastically incomplete manifolds and graphs, in [29]

  38. Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Math. J. 25, 659–670 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M.K. and D.L. gratefully acknowledge partial support from German Research Foundation (DFG). J.M. gratefully acknowledges partial support from the Japan–Korea Basic Scientific Cooperation Program “Non-commutative Stochastic Analysis: New Prospects of Quantum White Noise and Quantum Walk” (2015–2016) and Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 26400062 (2014–2016), “Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers”. M.S. has been financially supported by the Graduiertenkolleg 1523/2: Quantum and gravitational fields and by the European Science Foundation (ESF) within the project Random Geometry of Large Interacting Systems and Statistical Physics. The authors gratefully acknowledge the constructive comments on the paper by the anonymous referee, which improved the quality of the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Masamune.

Additional information

Communicated by J. Jost.

Appendix A. Construction of the sequence \((e_n)\) and a lemma on sequences

Appendix A. Construction of the sequence \((e_n)\) and a lemma on sequences

The subsequent two results are certainly known in one way or other. We include a proof in this appendix in order to keep the paper self-contained and as they may be useful for further references as well.

Proposition A.1

Let Q be a Dirichlet form on a \(\sigma \)-finite space (Xm). Then, the following holds:

  1. (a)

    There exists a sequence \((e_n)\) in D(Q) with \(0\le e_n \le 1\) and \(e_n \rightarrow 1\) m-a.e.

  2. (b)

    If Q is regular, the sequence \((e_n)\) from (a) can be chosen in \(D(Q)\cap C_c (X)\).

  3. (c)

    If Q is regular and recurrent, then \((e_n)\) from (b) can be chosen to satisfy \(e_n \rightarrow 1\) in the sense of \(Q_e\), i.e., \(Q(e_n)\rightarrow 0\).

Proof

(a) By our assumptions there exists an increasing sequence of sets of finite measure \((B_k)\) such that \(X = \bigcup _k B_k\). Because D(Q) is dense in \(L^2(X,m)\), we can choose \(f_n \in D(Q)\) satisfying

$$\begin{aligned} \Vert f_n - \chi _{B_n}\Vert _{2} \rightarrow 0, \text { as }n \rightarrow \infty . \end{aligned}$$

Let \(e_n = (0 \vee f_n)\wedge 1\). Since Q is a Dirichlet form, we infer \(e_n \in D(Q).\) Furthermore by construction we see \(0 \le e_n \le 1\) and

$$\begin{aligned} \Vert e_n - \chi _{B_n}\Vert _{2} \le \Vert f_n - \chi _{B_n}\Vert _{2}. \end{aligned}$$

We want to show that \((e_n)\) possesses a subsequence converging to 1 \(m-\)almost surely. For \(k,n \in \mathbb {N}\) and \(\delta > 0\) let

$$\begin{aligned} A_{k,n,\delta } = \{x \in B_k: |e_n(x)-1| \ge \delta \}. \end{aligned}$$

By the Markov-inequality we observe for \(n \ge k\)

$$\begin{aligned} m(A_{k,n,\delta }) \le \delta ^{-2} \Vert (1-e_n)\chi _{B_k} \Vert _2^2 \le \delta ^{-2}\Vert \chi _{B_n} - e_n \Vert _2^2. \end{aligned}$$

This allows us to choose a subsequence \(e_{n_l}\), such that for any k

$$\begin{aligned} \sum _{l=1}^{\infty } m(A_{k,n_l,l^{-1}}) < \infty . \end{aligned}$$

Let \( N = \bigcup _k \bigcap _{j \ge 1} \bigcup _{l\ge j}A_{k,n_l,l^{-1}}\) and \(x \in X{\setminus } N\). It is easily verified that \(e_{n_l}(x) \rightarrow 1\) as \(l \rightarrow \infty \). To prove (a), it remains to show \(m(N) = 0\), which can be checked directly by computing

$$\begin{aligned} m(N) \le \sum _k \lim _{j \rightarrow \infty } m \Big (\bigcup _{l \ge j} A_{k,n_l,l^{-1}}\Big ) \le \sum _k \limsup _{j \rightarrow \infty } \sum _{n\ge j} m(A_{k,n_l,l^{-1}}) =0 \end{aligned}$$

(b) Because of the regularity of Q, we know that \(C_c(X) \cap D(Q)\) is dense in D(Q) (hence, in \(L^2(X,m)\)) with respect to \(L^2(X,m)\) convergence. Thus, in the proof of (a) we can replace \(f_n \in D(Q)\) by \(g_n \in C_c(X) \cap D(Q)\) to obtain (b).

(c) By recurrence there exists a sequence \(h_n \in D(Q)\) such that \(0 \le h_n \le 1\), \(h_n \rightarrow 1\) pointwise m-almost surely and

$$\begin{aligned} \lim _{n \rightarrow \infty } Q(h_n)= 0. \end{aligned}$$

By regularity of Q we can choose \(\tilde{e}_n \in C_c(X) \cap D(Q)\) satisfying

$$\begin{aligned} \Vert \tilde{e}_n-h_n \Vert _Q \rightarrow 0 \text { as } n\rightarrow \infty . \end{aligned}$$

Let \(e_n = (0 \vee h_n)\wedge 1\) such that \(0\le e_n \le 1\). We will show, that \(e_n\) has a subsequence converging to 1 m-almost everywhere and

$$\begin{aligned} \lim _{n\rightarrow \infty }Q(e_n) = 0. \end{aligned}$$

Let \(A_{k,n,\delta }\) be sets defined as in the proof of (a). The first assertion follows as above, using

$$\begin{aligned} m(A_{k,n,\delta })&\le \delta ^{-2} \Vert (e_n - 1)\chi _{B_k}\Vert _2^2 \\&\le \delta ^{-2} \Vert (\tilde{e}_n - 1)\chi _{B_k}\Vert _2^2\\&\le \delta ^{-2} \left[ \Vert (\tilde{e}_n - h_n)\chi _{B_k}\Vert _2 + \Vert (1- h_n)\chi _{B_k}\Vert _2 \right] ^2 \\&\le \delta ^{-2} \left[ \Vert (\tilde{e}_n - h_n)\Vert _2 + \Vert (1- h_n)\chi _{B_k}\Vert _2 \right] ^2. \end{aligned}$$

The second statement can be deduced by

$$\begin{aligned} Q(e_n)^ {1/2} \le Q(\tilde{e}_n)^ {1/2} \le Q(\tilde{e}_n-h_n)^ {1/2} + Q(h_n)^ {1/2} \le \Vert \tilde{e}_n-h_n\Vert _Q + Q(h_n)^ {1/2}. \end{aligned}$$

This finishes the proof.

Lemma A.2

Let \((a_{n,m})_{n,m \in \mathbb {N}}\) be a sequence of real numbers satisfying \(a_{n+1,m} \ge a_{n,m}\) for each \(n,m \in \mathbb {N}\). Then,

$$\begin{aligned} \liminf _{n\rightarrow \infty }\liminf _{m\rightarrow \infty } a_{n,m} \le \liminf _{m\rightarrow \infty }\liminf _{n\rightarrow \infty } a_{n,m}. \end{aligned}$$

Proof

Suppose \(\liminf _{m\rightarrow \infty }\liminf _{n\rightarrow \infty } a_{n,m} < \infty \). Let \(\varepsilon > 0\) be arbitrary. Choose an increasing sequence of indices \((m_l)\) such that

$$\begin{aligned} \liminf _{n\rightarrow \infty } a_{n,m_l} \le \liminf _{m \rightarrow \infty } \liminf _{n\rightarrow \infty } a_{n,m} + \varepsilon \end{aligned}$$

for each \(l \ge 1\). This and the monotonicity in n imply

$$\begin{aligned} a_{n,m_l} \le \liminf _{m \rightarrow \infty } \liminf _{n\rightarrow \infty } a_{n,m} +\varepsilon . \end{aligned}$$

As \((a_{n,m_l})_{l \ge 1}\) is a particular subsequence of \((a_{n,m})_{m \ge 1}\), we infer

$$\begin{aligned} \liminf _{m\rightarrow \infty } a_{n,m} \le \lim _{l \rightarrow \infty } \liminf _{n\rightarrow \infty } a_{n,m_l} + \varepsilon \end{aligned}$$

which proves the claim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeseler, S., Keller, M., Lenz, D. et al. Global properties of Dirichlet forms in terms of Green’s formula. Calc. Var. 56, 124 (2017). https://doi.org/10.1007/s00526-017-1216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1216-7

Mathematics Subject Classification

Navigation