Skip to main content
Log in

Neurotoxicity of Lindane and Picrotoxin: Neurochemical and Electrophysiological Correlates in the Rat Hippocampus In Vivo

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we compared in vivo changes of extracellular amino acid levels and nucleotide derivatives to a single ip dose of lindane (10-60 mg/kg) and picrotoxin (5 mg/kg) in the hippocampus of halothane anaesthetized rat by microdialysis-coupled HPLC analysis. Brain activity was monitored by EEG. The effects of lindane and picrotoxin on EEG pattern of rats as well as on hippocampal amino acid and nucleotide status were studied in 0-50 min, 50-100 min and 100-150 min periods post-dosing. Significant decreases in Glu and Asp were found after picrotoxin treatment. After 50-100 min post-dosing, hippocampal hypoxanthine and inosine levels increased to both lindane (10 mg/kg) and picrotoxin whereas xanthine and uridine levels increased to picrotoxin, only. Lindane elicited a dose-dependent occurrence of negative spikes accompanied with rhythmic activity at 4-5 Hz. The picrotoxin-induced 4-5 Hz activity did not display negative sharp waves and was accompanied by 10 Hz oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Joy, R. M. and Albertson, T. E. 1987. Interactions of lindane with synaptically mediated inhibition and facilitation in the dentate gyrus. NeuroToxicology 8:529–542.

    Google Scholar 

  2. Damgaard, I., Nyitrai, G., Kovács, I., Kardos, J., and Schousboe, A. 1999. Possible involvement of GABAA and GABAB receptors in the inhibitory action of lindane on transmitter release from cerebellar granule neurons. Neurochem. Res. 24:1189–1193.

    Google Scholar 

  3. Obrenovitch, T. P., Urenjak, U., and Zilkha, E. 1996. Evidence disputing the link between seizure activity and high extracellular glutamate. J. Neurochem. 66:2446–2454.

    Google Scholar 

  4. Sierra-Paredes, G., Galán-Valiente, J., Vazquez-Illanes, D., Aguilar-Veiga, E., Soto-Otero, R., Mendez-Alvarez, E., and Sierra-Marcuno, G. 1998. Extracellular amino acids in the rat hippocampus during picrotoxin threshold seizures in chronic microdialysis experiments. Neurosci. Lett. 248:53–56.

    Google Scholar 

  5. Berman, R. F., Fredholm, B. B., Aden, U., and O'Connor, W. T. 2000. Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res. 872:44–53.

    Google Scholar 

  6. Nyitrai, G., Zs. Emri, V., Crunelli, A. K. Kékesi, Á. Dobolyi and G. Juhász 1996. Blockade of Thalamic GABAB Receptors In Vivo Increases Excitatory Amino Acid Levels. Eur. J. Pharmacol. 318:295–300.

    Google Scholar 

  7. Juhász, G., Tarcali, J., Pungor, K., and Pungor, E. 1989. Electrochemical calibration of in vivo brain dialysis samplers. J. Neurosci. Methods, 29:131–137.

    Google Scholar 

  8. Paxinos G. and Watson C. 1997. The rat brain stereotaxic coordinates. Academic Press, Orlando.

    Google Scholar 

  9. Henderson, J. W., Ricker, R. D., Bidlingmeyer, B. A., and Woodward, C. </del>2000. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. Agilent Technologies, www.agilent.com/chem/supplies.

  10. Dobolyi, Á., Reichart, A., Szikra, T., Szilágyi N., Kékesi A. K., Karancsi T., Slégel P., Palkovits M., and Juhász, G. 1998. Analysis of purine and pyrimidine bases, nucleosides and deoxynucleosides in brain microsamples (microdialysates and micropunches) and cerebrospinal fluid. Neurochem. Int. 32:247–256.

    Google Scholar 

  11. Dobolyi, Á., Reichart, A., Szikra, T., Nyitrai G., Kékesi A. K., and Juhász, G. 2000. Sustained depolarisation induces changes in the extracellular concentrations of purine and pyrimidine nucleosides in the rat thalamus. Neurochem. Int. 37:71–79.

    Google Scholar 

  12. Benveniste, H. and Huttemeier P. C. 1990. Microdialysis: theory application, Prog. Neurobiol., 35:195–215.

    Google Scholar 

  13. Torrence C. H. and Compo, G. P. 1998. Practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. 79:61–78.

    Google Scholar 

  14. Tussel, J. M., Sunol, C., Gelphi, E., and Rodríguez-Farré, E. 1987. Relationship between lindane concentration in blood and brain and convulstant response in rats after oral or intraperitoneal administration. Arch. Toxicol. 60:432–437.

    Google Scholar 

  15. Dai, K. S. and Woolley D. E. 1991. Ro 5–4864, like picrotoxin, enhances EPSP-spike coupling in the freely behaving rat. Brain Res. Bull. 27:13–17.

    Google Scholar 

  16. Krogsgaard-Larsen, P., Frolund, B., Jorgensen, F., and Schousboe, A. 1994. GABAA receptor agonists, partial agonists, and antagonists. Design and therapeutic prospects. J. Med. Chem. 37:2489–2505.

    Google Scholar 

  17. Kardos, J. 1999. Recent advances in GABA research. Neurochem. Int. 34:353–358.

    Google Scholar 

  18. Kardos, J., Elster, L., Damgaard, I., Krogsgaard-Larsen, P., and Schousboe, A. 1994. Role of GABAB receptors in intracellular Ca2+ homeostasis and possible interaction between GABAA and GABAB receptors in regulation of transmitter release in cerebellar granule neurons. J. Neurosci. Res. 39:646–655.

    Google Scholar 

  19. Schousboe, A. 1999. Pharmacologic and therapeutic aspects of developmentally regulated expression of GABAA and GABAB receptors: cerebellar granule cells as a model system. Neurochem. Int. 34:373–377.

    Google Scholar 

  20. Newberry, N. R. and Nicoll, R. A. 1985. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J. Physiol. 360: 161–185.

    Google Scholar 

  21. Crunelli, V., Haby, M., Jassik-Gerschenfeld, D., Leresche, N., and Pirchio, M. 1988. Cl-and K-dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. J. Physiol. 399:153–176.

    Google Scholar 

  22. Connors, B. W., Malenka, R. C., and Silva, L. R. 1988. Two inhibitory postsynaptic potentials, and GABAa and GABAb receptor-mediated responses in neocortex of rat and cat. J. Physiol. 406:443–468.

    Google Scholar 

  23. Crunelli, V. and Leresche, N. 1991. A role for GABAb receptors in excitation and inhibition of thalamocortical cells. TINS 14:16–21.

    Google Scholar 

  24. von Krosigk, M., Bal, Th., and McCormick, D. A. 1993. Cellular mechanisms of a synchronised oscillation in the thalamus. Science 261:361–364.

    Google Scholar 

  25. Bormann, J. and Kettenmann, H. 1988. Patch-clamp study of γ-aminobutyric acid receptor Cl- channels in cultured astrocytes. Proc. Natl. Acad. Sci. USA 85:9336–9340.

    Google Scholar 

  26. MacVicar, B. A., Tse, F. W., Crichton, S. A., and Kettenmann, H. 1989. GABA-activated Cl- channels in astrocytes of hippocampal slices. J. Neurosci. 9:3577–3583.

    Google Scholar 

  27. Fraser, D. D., Duffy, S., Angelides, K. J., Perez-Velazquez, J. L., Kettenmann, H., and MacVicar, B. A. 1995. GABAA/ Benzodiazepine receptors in acutely isolated hippocampal astrocytes. J. Neurosci. 15:2720–2732.

    Google Scholar 

  28. Nakahiro, M., Arakawa, O., Narahashi, T., Ukai, S., Kato, Y., Nishinuma, K., and Nishinuma, T. 1992. Dimethyl sulfoxyde (DMSO) blocks GABA-induced current in rat dorsal root ganglion neurons. Neurosci. Lett. 138:5–8.

    Google Scholar 

  29. Joy, R. M. and Albertson, T. E. 1987. Factors responsible for increased excitability of dentate gyrus granule cells during exposure to lindane. Neurotoxicology 8:517–524.

    Google Scholar 

  30. Zimmermann, H. 1996. Extracellular purine metabolism. Drud Development Res. 39:337–352.

    Google Scholar 

  31. Kardos, J., Kovács, I., Szárics, E., Kovács, R., Skuban, N., Nyitrai, G., Dobolyi, Á, Juhász, G. 1999. Uridine activates fast transmembrane Ca2+ ion fluxes in rat brain homogenates. Neuroreport 10:1577–1582.

    Google Scholar 

  32. Llorens, J. Sunol, C., Tusell, J. M., and Rodriguez-Farré, E. 1991. Evidence for acute tolerance to the behavioral effects of lindane: concomitant changes in regional monoamine status. NeuroToxicology 12:697–706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyitrai, G., Kékesi, K.A., Szilágyi, N. et al. Neurotoxicity of Lindane and Picrotoxin: Neurochemical and Electrophysiological Correlates in the Rat Hippocampus In Vivo. Neurochem Res 27, 139–145 (2002). https://doi.org/10.1023/A:1014819125873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014819125873

Navigation