Skip to main content
Log in

Gas-generating Porous Electrodes: Effect of the Catalyst Activity on the Polarization Curves

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Effect of the activity of the catalyst in gas-generating porous electrodes (GPE) of the DSA type on the anodic branch of polarization curves is studied. The structure of the GPE porous space and the electrode kinetics are assumed to remain invariant. The quantities that are varied are the electrode thickness and the exchange current j 0. Characteristics of GPE electrodes of high, medium, and low activity (j 0 of 1.2 × 10–2,1.2 × 10–4, and 1.2 × 10–6 A cm–2, respectively) are compared. The standard thicknesses, calculated for these electrodes, are 1, 5, and 20 μm. In GPE of high and medium activity, after the emergence of first gas pores, the gas generation region, which before this was localized in a narrow region near the front surface of GPE, can rapidly expand by tens of times, so can the overall current. With a further overvoltage increase, ohmic restrictions again press the gas generation region to the front surface of GPE. In the low-activity GPE, the expansion of the gas generation region and the increase in the overall current are insignificant. It is shown that the medium-activity GPE commonly used in the chlorine electrolysis may be viewed as optimal. However, this by no means implies that the DSA operation mechanism is ideal. Perfecting the porous-space structure of DSA even further gives one a chance to considerably better its electrochemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yakimenko, L.M., Proizvodstvo khlora, kausticheskoi sody i neorganicheskikh khlorproduktov (Production of Chlorine, Sodium Hydroxide, and Inorganic Chlorine Derivatives), Moscow: Khimiya, 1974.

    Google Scholar 

  2. Yakimenko, L.M. and Pasmanik, M.I., Spravochnik po proizvodstvu khlora, kausticheskoi sody i osnovnykh khlorproduktov (Handbook on the Production of Chlorine, Sodium Hydroxide, and Basic Chlorine Derivatives), Moscow: Khimiya, 1976.

    Google Scholar 

  3. Yakimenko, L.M., Elektrodnye materialy v prikladnoi elektrokhimii (Electrode Materials in Applied Electrochemistry), Moscow: Khimiya, 1977.

    Google Scholar 

  4. Abstracts of Papers, IV Vsesoyuz. seminar “Maloiznashivaemye anody i ikh primenenie v elektrokhimicheskikh protsessakh” (IV All-Union Workshop on Nonsacrificial Anodes and Their Application in Electrochemical Processes), Moscow: NIITeKhim, 1979.

  5. Yakimenko, L.M., Poluchenie vodoroda, kisloroda, khlora i shchelochei (Production of Hydrogen, Oxygen, Chlorine, and Alkalis), Moscow: Khimiya, 1981.

    Google Scholar 

  6. Fioshin, M.Ya. and Smirnova, M.G., Tekhnika elektroliza (The Electrolysis), Rostov-on-Don: Rostov. Univ., 1983.

    Google Scholar 

  7. Abstracts of Papers, V Vsesoyuz. seminar “Maloiznashivaemye anody i ikh primenenie v elektrokhimicheskikh protsessakh” (V All-Union Workshop on Nonsacrificial Anodes and Their Application in Electrochemical Processes), Moscow, 1984.

  8. Abstracts of Papers, VI Vsesoyuz. seminar “Maloiznashivaemye anody i ikh primenenie v elektrokhimicheskikh protsessakh” (VI All-Union Workshop on Nonsacrificial Anodes and Their Application in Electrochemical Processes), Moscow, 1987.

  9. Yakimenko, L.M., Modylevskaya, I.D., and Tkachek, Z.A., Elektroliz vody (Electrolysis of Water), Moscow: Khimiya, 1970.

    Google Scholar 

  10. Kryukov, Yu.I., Chernyshov, S.F., and Pshenichnikov, A.G., Hydrogen Energy Progress, VII, Veziroglu, T.N., et al., Eds., New York: Pergamon, 1988, vol. 1, p. 403.

    Google Scholar 

  11. Pshenichnikov, A.G., Kazarinov, V.E., and Naumov, I.P., Elektrokhimiya, 1991, vol. 27, p. 1555.

    Google Scholar 

  12. Chernyshev, S.F., Kryukov, Yu.I., and Pshenichnikov, A.G., Elektrokhimiya, 1992, vol. 28, p. 391.

    Google Scholar 

  13. Pecherskii, M.M., Gorodetskii, V.V., Evdokimov, S.V., and Losev, V.V., Elektrokhimiya, 1981, vol. 17, p. 1087.

    Google Scholar 

  14. Chirkov, Yu.G., Elektrokhimiya, 2000, vol. 36, p. 526.

    Google Scholar 

  15. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2000, vol. 36, p. 735.

    Google Scholar 

  16. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 336.

    Google Scholar 

  17. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 409.

    Google Scholar 

  18. Chirkov, Yu.G. and Chernenko, A.A., Elektrokhimiya, 2001, vol. 37, p. 546.

    Google Scholar 

  19. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 557.

    Google Scholar 

  20. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 987.

    Google Scholar 

  21. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2001, vol. 37, p. 1107.

    Google Scholar 

  22. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 316.

    Google Scholar 

  23. Erenburg, R.G. and Krishtalik, L.I., Elektrokhimiya, 1987, vol. 23, p. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Gas-generating Porous Electrodes: Effect of the Catalyst Activity on the Polarization Curves. Russian Journal of Electrochemistry 38, 285–292 (2002). https://doi.org/10.1023/A:1014738924888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014738924888

Keywords

Navigation