Skip to main content
Log in

Metal-free nitrogen-doped graphenic materials as cathode catalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Exhibiting a very high surface area, a good electrical conductivity and a high density of active sites, nitrogen-doped graphenic materials are considered as promising catalysts for the oxygen reduction reaction (ORR). Seldom studied in acidic media, N-doped graphenic foams were tested here as the cathode catalysts of a polymer electrolyte membrane fuel cell (PEMFC). The materials were prepared via a solvothermal-based process, by reacting either cyclohexanol and ethanolamine or 1-(2-hydroxyethylethyl) piperidine with metallic sodium, under high pressure and temperature. Membrane electrode assemblies were prepared with a Pt/C anode, 212 Nafion membrane, and an 8 mm disk cathode based on the graphenic materials. The performance exhibited by the PEMFC was evaluated using chronopotentiometry and impedance spectroscopy, depending on the synthesis conditions. The kinetic parameters of the ORR were estimated by interpretation of the experimental data: the high Tafel slope found might express the partial control of oxygen diffusion through the graphenic microporous structure. Relationships between the electrochemical behavior of the materials and their structural properties are discussed. Moderately crystallized materials with a low oxygen content showed the highest catalytic properties, with a current density larger than 30 mA cm−2 and a maximum power density at 2.3 mW cm−2.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gröger O, Gasteiger HA, Suchsland J-P (2015) Review—electromobility: batteries or fuel cells? J Electrochem Soc 162:2605–2622. https://doi.org/10.1149/2.0211514jes

    Article  CAS  Google Scholar 

  2. Karan HI, Sasaki K, Kuttiyiel K, Farberow CA, Mavrikakis M, Adzic RR (2012) Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction. ACS Catal 2:817–824. https://doi.org/10.1021/cs200592x

    Article  CAS  Google Scholar 

  3. Zhang G, Shao Z-G, Lu W, Li G, Liu F, Yi B (2012) One-pot synthesis of Ir@Pt nanodendrites as highly active bifunctional electrocatalysts for oxygen reduction and oxygen evolution in acidic medium. Electrochem Commun 22:145–148. https://doi.org/10.1016/j.elecom.2012.05.030

    Article  CAS  Google Scholar 

  4. Zhu H, Zhang S, Guo S, Su D, Sun S (2013) Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J Am Chem Soc 135:7130–7133. https://doi.org/10.1021/ja403041g

    Article  CAS  PubMed  Google Scholar 

  5. Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt−Cu core−shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112:2770–2778. https://doi.org/10.1021/jp0776412

    Article  CAS  Google Scholar 

  6. Robinson Z (2017) Sustainability of platinum production in South Africa and the dynamics of commodity pricing. Resour Policy 51:107–114. https://doi.org/10.1016/j.resourpol.2016.12.001

    Article  Google Scholar 

  7. Government publishing office (2018) Mineral commodities summary 2018. (US Govt. Printing Office)

  8. Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W (2013) Manageable N-doped graphene for high performance oxygen reduction reaction. Sci Rep. https://doi.org/10.1038/srep02771

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176. https://doi.org/10.1021/jp201991j

    Article  CAS  Google Scholar 

  10. Zhang L, Niu J, Dai L, Xia Z (2012) Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 28:7542–7550. https://doi.org/10.1021/la2043262

    Article  CAS  PubMed  Google Scholar 

  11. Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal 5:5207–5234. https://doi.org/10.1021/acscatal.5b00991

    Article  CAS  Google Scholar 

  12. Ma R, Ren X, Xia BY, Zhou Y, Sun C, Liu Q, Liu J, Wang J (2016) Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Res 9:808–819. https://doi.org/10.1007/s12274-015-0960-2

    Article  CAS  Google Scholar 

  13. Shao Y, Zhang S, Engelhard MH, Li G, Show G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496. https://doi.org/10.1039/c0jm00782j

    Article  CAS  Google Scholar 

  14. Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century. Catal Today 77:17–49. https://doi.org/10.1016/S0920-5861(02)00231-6

    Article  CAS  Google Scholar 

  15. Huang J, Han J, Gao T, Zhang X, Li J, Li Z, Xu P, Song B (2017) Metal-free nitrogen-doped carbon nanoribbons as highly efficient electrocatalysts for oxygen reduction reaction. Carbon 124:34–41. https://doi.org/10.1016/j.carbon.2017.08.033

    Article  CAS  Google Scholar 

  16. Geng D, Chen Y, Chen Y, Li Y, Li R, Sun X, Ye S, Knights S (2011) High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ Sci 4:760–764. https://doi.org/10.1039/c0ee00326c

    Article  CAS  Google Scholar 

  17. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. https://doi.org/10.1021/nn901850u

    Article  CAS  PubMed  Google Scholar 

  18. Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140. https://doi.org/10.1016/j.carbon.2018.02.024

    Article  CAS  Google Scholar 

  19. Quílez-Bermejo J, González-Gaitán C, Morallón E, Cazorla-Amorós D (2017) Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR. Some insights about the nature of the active sites. Carbon 119:62–71. https://doi.org/10.1016/j.carbon.2017.04.015

    Article  CAS  Google Scholar 

  20. Wu P, Du P, Zhang H, Cai C (2013) Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction. Phys Chem Chem Phys 15:6920–6928. https://doi.org/10.1039/c3cp50900a

    Article  CAS  PubMed  Google Scholar 

  21. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365. https://doi.org/10.1126/science.aad0832

    Article  CAS  PubMed  Google Scholar 

  22. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5:7936–7942. https://doi.org/10.1039/c2ee21802j

    Article  CAS  Google Scholar 

  23. Florent M, Wallace R, Bandosz TJ (2019) Oxygen electroreduction on nanoporous carbons: textural features vs nitrogen and boron catalytic centers. ChemCatChem 11:851–860. https://doi.org/10.1002/cctc.201801675

    Article  CAS  Google Scholar 

  24. Jiang Y, Yang L, Sun T, Zhao J, Lyu Z, Zhuo O, Wang X, Wu Q, Ma J, Hu Z (2015) Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal 5:6707–6712. https://doi.org/10.1021/acscatal.5b01835

    Article  CAS  Google Scholar 

  25. Ikeda T, Boero M, Huang S-F, Terakura K, Oshima M, Ozaki J-I (2008) Carbon alloy catalysts: active sites for oxygen reduction reaction. J Phys Chem C 112:14706–14709. https://doi.org/10.1021/jp806084d

    Article  CAS  Google Scholar 

  26. Franck-Lacaze L, Bonnet C, Choi E, Moss J, Pontvianne S, Poirot H, Datta R, Lapicque F (2009) Ageing of PEMFCs due to operation at low current density: investigation of oxidative degradation. Int J Hydrogen Energy 34:10472–10481. https://doi.org/10.1007/s10800-012-0451-z

    Article  CAS  Google Scholar 

  27. Moumaneix L, Fontana S, Dossot M, Lapicque F, Hérold C (2020) Nitrogen-doped graphenic foam synthesized by solvothermal-based process: effect of pyrolysis temperature on the material properties. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110165

    Article  Google Scholar 

  28. Speyer L, Fontana S, Cahen S, Ghanbaja J, Medjahdi G, Hérold C (2015) Multi-scale characterization of graphenic materials synthesized by a solvothermal-based process: influence of the thermal treatment. Solid State Sci 50:42–51. https://doi.org/10.1016/j.solidstatesciences.2015.10.009

    Article  CAS  Google Scholar 

  29. Liu J, Sasaki K, Lyth SM (2013) Electrochemical oxygen reduction on metal-free nitrogen-doped graphene foam in acidic media. ECS Trans 58:1529–1540. https://doi.org/10.1149/05801.1529ecst

    Article  CAS  Google Scholar 

  30. Perry ML, Newman J, Cairns EJ (2019) Mass transport in gas-diffusion electrodes: a diagnostic tool for fuel-cell cathodes. J Electrochem Soc 145:5–15. https://doi.org/10.1149/1.1838202

    Article  Google Scholar 

  31. Tant S, Rosini S, Thivel P-X, Druart F, Rakotondrainibe A, Geneston T, Bultel Y (2014) An algorithm for diagnosis of proton exchange membrane fuel cells by electrochemical impedance spectroscopy. Electrochim Acta 135:368–379. https://doi.org/10.1016/j.electacta.2014.04.108

    Article  CAS  Google Scholar 

  32. Byambasuren U, Jeon Y, Altansukh D, Ji Y, Shul Y-G (2016) The particle size effect of N-doped mesoporous carbons as oxygen reduction reaction catalysts for PEMFC. Korean J Chem Eng 33:1831–1836. https://doi.org/10.1007/s11814-016-0030-9

    Article  CAS  Google Scholar 

  33. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930. https://doi.org/10.1021/nl300901a

    Article  CAS  PubMed  Google Scholar 

  34. Piscanec S, Mauri F, Ferrari AC, Lazzeri M, Robertson J (2005) Ab initio resonant Raman spectra of diamond-like carbons. Diam Relat Mater 14:1078–1083. https://doi.org/10.1016/j.diamond.2004.11.043

    Article  CAS  Google Scholar 

  35. Bhaumik A, Haque A, Taufique M, Karnati P, Patel R, Nath M, Ghosh K (2017) Reduced graphene oxide thin films with very large charge carrier mobility using pulsed laser deposition. J Mater Sci Eng. https://doi.org/10.4172/2169-0022.1000364

    Article  Google Scholar 

  36. Smith MW, Dallmeyer I, Johnson TJ, Brauer CS, McEwen J-S, Espinal JF, Garcia-Perez M (2016) Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles. Carbon 100:678–692. https://doi.org/10.1016/j.carbon.2016.01.031

    Article  CAS  Google Scholar 

  37. Bokobza L, Bruneel J-L, Couzi M (2015) Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. Carbon 1:77–94. https://doi.org/10.3390/c1010077

    Article  Google Scholar 

  38. Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108. https://doi.org/10.1146/annurev-conmatphys-070909-103919

    Article  CAS  Google Scholar 

  39. Park S, Hu Y, Hwang JO, Lee E-S, Casabianca LB, Cai W, Potts JR, Ha H-W, Chen S, Oh J, Kim SO, Kim Y-H, Ishii Y, Ruoff RS (2012) Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun. https://doi.org/10.1038/ncomms1643

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhu Y, Huang H, Zhou W, Li G, Liang X, Guo J, Tang S (2017) Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors. J Mater Sci Mater Electron 28:10098–10105. https://doi.org/10.1007/s10854-017-6771-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lapicque.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumaneix, L., Fontana, S., Hérold, C. et al. Metal-free nitrogen-doped graphenic materials as cathode catalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Appl Electrochem 51, 727–738 (2021). https://doi.org/10.1007/s10800-021-01532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01532-6

Keywords

Navigation