Skip to main content
Log in

Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

This paper describes the results of a comparative screening between the nematophagous Antarctic fungus Arthrobotrys tortor and other species of that genus for the production of extracellular collagenases. The nematode species used in this study was Caenorhabditis elegans, feeding on Escherichia coli cultures. Determination of collagenase activity was made using insoluble collagen from bovine Achilles tendon and determining the amount of solubilized hydroxyproline produced. The results show that the total amount of collagenase produced by the Antarctic strain of A. tortor was about threefold higher than that observed for the other species. In the Antarctic strain, collagenase was shown to be a constitutive enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dackman C, Nordbring-Hertz B. Conidial traps - a new survival structure of the nematode-trapping fungus Arthrobotrys oligospora. Mycol Res 1992; 96: 194–198.

    Google Scholar 

  2. Dackman C, Jansson H-B, Nordbring-Hertz B. Nematophagous fungi and their activities in soil. In: Stotzky G, Bollag JM, eds. Soil Biochemistry 1992; 7: 95–130.

  3. Nordbring-Hertz B. Nematophagous fungi: strategies for nematode exploitation and survival. Microbiol Sci 1988; 5: 108–116.

    PubMed  CAS  Google Scholar 

  4. Tunlid A, Janson S. Proteases and their involvment in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl Environ Microbiol 1991; 57: 2868–2872.

    PubMed  CAS  Google Scholar 

  5. Tunlid A, Rosen S, Nordbring-Hertz B. Molecular mechanisms of adhesion in the nematophagous fungus Arthrobotrys oligospora. J Mycol Méd 1992; 2: 36–42.

    Google Scholar 

  6. Tunlid A, Jansson H-B, Nordbring-Hertz B. Fungal attachment to nematodes. Mycol Res 1992; 96(6): 401–412.

    Google Scholar 

  7. Veenhuis M, Harder W, Nordbring-Hertz B. Occurence and metabolic significance of microbodies in trophic hyphae of the nematophagous fungus Arthrobotrys oligospora. Antonie van Leeuwenhoek 1989; 56: 241–249.

    Article  PubMed  CAS  Google Scholar 

  8. Veenhuis M, van Wijk C, Wyss U, Nordbring-Hertz B. Significance of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie van Leeuwenhoek 1989; 56: 251–261.

    Article  PubMed  CAS  Google Scholar 

  9. Olthof ThHA, Estey RH. A nematotoxin produced by the nematophagous fungus Arthrobotrys oligospora Fresenius. Nature 1963; 197: 514–515.

    Article  Google Scholar 

  10. Balan J, Križkova L, Nemec P, Voller V. Production of nematode-attracting and nematicidal substances by predaceous fungi. Folia Microbiol 1974; 19: 512–519.

    CAS  Google Scholar 

  11. Barron GL, Thorn RG. Destruction of nematodes by species of Pleurotus. Can J Bot 1987; 65: 774–778.

    Google Scholar 

  12. Stadler M, Anke H, Sterner O. Linoleic acid - The nematicidal principle of several nematophagous fungi and its production in trap-forming submerged cultures. Arch Microbiol 1993; 169: 401–405.

    Google Scholar 

  13. Anke H, Stadler M, Mayer A, Sterner O. Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Can J Bot 1995; 73(suppl 1): S932–S939.

    CAS  Google Scholar 

  14. Tunlid A, Rosèn S, Ek B et al. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 1994; 140: 1687–1695.

    Article  PubMed  Google Scholar 

  15. Schenck S, Chase T Jr, Rosenzweig WD, Pramer D. Collagenase production by nematode-trapping fungi. Appl Environ Microbiol 1980; 40(3): 567–570.

    PubMed  CAS  Google Scholar 

  16. Caretta G, del Frate G, Tosi S. Nematophagous activity on moss as cultural substratum of Arthrobotrys tortor Jarowaja isolated in Antarctica. Boletíno Micològico 1995; 10(1-2): 37–41.

    Google Scholar 

  17. Jarowaja N. Arthrobotrys tortor sp. nov. New predaceous nematode-killing fungus. Acta Mycol 1968; 4: 241–247.

    Google Scholar 

  18. Schenck S, Kendrick WB, Pramer D. A new nematode-trapping hyphomycete and a reevaluation of Dactylaria and Arthrobotrys. Can J Bot 1977; 55: 977–985.

    Article  Google Scholar 

  19. Oorschot CAN van. Taxonomy of the Dactylaria complex.V. A review of Arthrobotrys and allied genera. Stud Mycol 1985; 26: 61–95.

    Google Scholar 

  20. Caretta G, Del Frate G. Mangiarotti AM. A record of Arthrobotrys tortor Jarowaja and Engyodontium album (Limber) de Hoog from Antarctica. Boletín Micològico 1994; 9: 9–13.

    Google Scholar 

  21. Caretta G, Piontelli E. Microsporum magellanicum and Cunninghamella antarctica, new species isolated from Australian and antarctic soil of Chile. Sabouraudia 1977; 15: 1–10.

    PubMed  CAS  Google Scholar 

  22. Caretta G, Mangiarotti AM, Piontelli E. Coprophilous fungi on horse, goat and sheep dung from Lombardia (Italy). Mic Ital 1994; 2: 11–20.

    Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall R J. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265.

    PubMed  CAS  Google Scholar 

  24. Huszar G, Maiocco J, Naftolin F. Monitoring of collagen and collagen fragments in chromatography of protein mixtures. Annal Biochem 1980; 105: 424.

    Article  CAS  Google Scholar 

  25. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680.

    Article  PubMed  CAS  Google Scholar 

  26. Viglio S, Zanaboni G, Luisetti M, Cetta G, Guglielminetti M, Iadarola P. Micellar electrokinetic chromatography: a convenient alternative to colorimetric and high performance liquid chromatographic detection to monitor protease activity. Electrophoresis 1998; 19: 2083.

    Article  PubMed  CAS  Google Scholar 

  27. Hurion N, Fromentin H, Keil B. Specificity of the collagenolytic enzyme from the fungus Entomophthora coronata: comparison with the bacterial collagenase from Achromobacteriophagus. Arch Biochem Biophys 1979; 192: 438–445.

    Article  PubMed  CAS  Google Scholar 

  28. Scifter S, Harper E. Collagenases. Methods Enzymol 1970; 19: 613–635.

    Article  Google Scholar 

  29. Duddington CL. The ecology of predaceous fungi. Trans Brit Myc Soc 1951; 34: 322–331.

    Article  Google Scholar 

  30. Gray NF, Smith RIL. The distribution of nematophagous fungi in the maritime Antarctic. Mycopathologia 1984; 85: 81–92.

    Article  Google Scholar 

  31. Gray NF. Nematophagous fungi from the maritime antarctic: factor affecting distribution. Mycopathologia 1985; 90: 165–176.

    Article  Google Scholar 

  32. Jansson HB, Tunlid A, Nordbring-Hertz B. Nematodes. In: Anke T, ed. Fungal Biotechnology. Chapman and Hall, Boca Raton, Florida, U.S., 1997: 38–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosi, S., Annovazzi, L., Tosi, I. et al. Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia 153, 157–162 (2002). https://doi.org/10.1023/A:1014511105803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014511105803

Navigation