Skip to main content
Log in

Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Initial F420-dependent hydrogenation of 2,4,6-trinitrophenol(picric acid) generated the hydride σ-complex of picrate and finally the dihydride complex.With 2,4-dinitrophenol the hydride σ-complex of 2,4-dinitrophenolis generated. The hydride transferring enzyme system showed activity against several substituted2,4-dinitrophenols but not with mononitrophenols. A Km-value of0.06 mM of the hydride transfer for picrate as substrate was found. The pH optimaof the NADPH-dependent F420 reductase and for the hydride transferase were 5.5and 7.5, respectively. An enzymatic activity has been identified catalyzing the releaseof stoichometric amounts of 1 mol nitrite from 1 mol of the dihydride σ-complexof picrate. This complex was synthesized by chemical reduction of picrate and characterizedby 1H and 13C NMR spectroscopy. The hydride σ-complex of 2,4-dinitrophenolhas been identified as the denitration product. The nitrite-eliminating activitywas enriched and clearly separated from the hydride transferring enzyme system byFPLC. 2,4-Dinitrophenol has been disproven as a metabolite of picrate (Ebert et al. 1999)and a convergent catabolic pathway for picrate and 2,4-dinitrophenol with thehydride σ-complex of 2,4-dinitrophenol as the common intermediate has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abken H-J (1998) Reinigung und Chrakterisierung der F420H2-Dehydrogenase aus Methanosarcina mazei Gö 1 und Identifizierung von Methanophenazin als neuartigen methanogenen Cofaktor. Mathematisch-naturwissentschaftliche Fakultät. Göttingen, Universität von Göttingen

    Google Scholar 

  • Behrend C (1999) Pikrinsäuremetabolismus in Nocardioides sp. CB-22. Institut für Biochemie. Witten/Herdecke, Privatuniversität Witten/Herdecke

    Google Scholar 

  • Behrend C &Heesche-Wagner K (1999) Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22–2. Appl. Environ. Microbiol. 65(4): 1372–1377

    Google Scholar 

  • Blasco R,Moore E,Wray V,Pieper D,Timmis K &Castillo F (1999) 3-Nitroadipate, a metabolic intermediate for mineralization of 2,4-dinitrophenol by a new strain of Rhodococcus Species. J. Bacteriol. 181(1): 149-152

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quanti-fication of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72: 248-252

    Google Scholar 

  • Ebert S,Rieger P-G &Knackmuss H-J (1999) Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J. Bacteriol. 181(9): 2669-2674

    Google Scholar 

  • Ecker S,Widmann T,Lenke H,Dickel O,Fischer P,Bruhn C &Knackmuss H-J (1992) Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Arch.Microbiol. 158: 149-154

    Google Scholar 

  • Eker APM,Hessels JKC &Meerwaldt R (1989) Characterization of an 8-hydroxy-5-deazaflavin: NADPH oxidoreductase from Streptomyces griseus. Biochim. Biophys. Acta 990: 80-86

    Google Scholar 

  • Hallas LE &Alexander M (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol. 45(4): 1234-1241

    Google Scholar 

  • Hanne LF,Kirk LL,Appel SM,Narayan AD &Bains KK (1993) Degradation and induction specifity in Actinomycetes that degrade p-nitrophenol. Appl. Environ. Microbiol. 59(10): 3503-3508

    Google Scholar 

  • Kadiyala V &Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl. Environ. Microbiol. 64(7): 2479-2484

    Google Scholar 

  • Lenke H &Knackmuss HJ (1992) Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl. Environ. Microbiol. 58(9): 2933-2937

    Google Scholar 

  • Lenke H &Knackmuss H-J (1996) Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenol. Appl. Environ. Microbiol. 62(3): 784-790

    Google Scholar 

  • Lenke H,Pieper DH,Bruhn C &Knackmuss H-J (1992) Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL-24-2. Appl. Environ. Microbiol. 58(9): 2928-2932

    Google Scholar 

  • Lin X-L &White RH (1986) Occurence of coenzyme F420 and its γ-monoglutamyl derivative in nonmethanogenic archaebacteria. J. Bacteriol. 168(1): 444-448

    Google Scholar 

  • Munnecke DM &Hsieh DPH (1974) Microbial degradation of parathion and p-nitrophenol. Appl. Microbiol. 28(2): 212-217

    Google Scholar 

  • Patil SS &Shinde VM (1989) Gas chromatographic studies on the biodegradation of nitrobenzene and 2,4-dinitrophenol. Environ. Pollut. 57: 235-250

    Google Scholar 

  • Purwantini E,Mukhopadhyay B,Spencer RW &Daniels L (1992) Effect of temperature on the spectral properties of coenzyme F420 and related compounds. Anal. Biochem. 205: 342-350

    Google Scholar 

  • Rajan J,Valli K,Perkins RE,Sariaslani FS,Barns SM,Reysenbach A-L,Rehm S &Ehringer M (1996) Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J. Ind. Microbiol. 16: 319-324

    Google Scholar 

  • Rieger P-G &Knackmuss H-J (1995). Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York

    Google Scholar 

  • Rieger P-G,Sinnwell V,Preuß A,Francke W &Knackmuss H-J (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J. Bacteriol. 181(4): 1189-1195

    Google Scholar 

  • Russ R,Walters DM,Knackmuss H-J &Rouvière P (2000). Identification of genes involved in picric acid and 2,4-dinitrophenol degradation by mRNA differential display. In Spain JC,Hughes JB &Knackmuss H-J (ed) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton

    Google Scholar 

  • Severin T &Adam M (1963) Umsetzung mit Natriumborhydrid, II. Chem. Ber. 96: 448-452

    Google Scholar 

  • Severin T &Schmitz R (1962) Umsetzung von Nitroaromaten mit Natriumborhydrid. Chem. Ber. 95: 1417-1419

    Google Scholar 

  • Spain JC,Wyss O &Gibson DT (1979) Enzymatic oxidation of pnitrophenol. Biochem. Biophys. Res. Commun. 88(2): 634-641.

    Google Scholar 

  • Tsukamura M (1960) Enzymatic reduction of picric acid. J. Biochem. 48(5): 662-671

    Google Scholar 

  • Vorbeck C,Lenke H,Fischer P,Spain JC &Knackmuss H-J (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 64(1): 246-252

    Google Scholar 

  • Williams RE &Bruce NC (2000). The role of nitrate ester reductase enzymes in the biodegradation of explosives. In Spain JC,Hughes JB &Knackmuss H-J (ed) Biodegradation of nitroaromatic compounds and explosives. Lewis Publisher, Boca Raton

    Google Scholar 

  • Wyman JF,Serve MP,Hobson DW,Lee LH &Uddin D (1992) Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats. J. Toxicol. Environ. Health 37: 313-327

    Google Scholar 

  • Zablotowicz RM,Leung KT,Alber T,Cassidy MB,Trevors JT,Lee H,Veldhuis L &Hall JC (1999) Degradation of 2,4-dinitrophenol and selected nitroaromatic compounds by Sphingomonas sp. UG30. Can. J. Microbiol. 45: 840-848

    Google Scholar 

  • Zeyer J &Kearney PC (1984) Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J. Agric. Food Chem. 32: 238-242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, S., Fischer, P. & Knackmuss, HJ. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation 12, 367–376 (2001). https://doi.org/10.1023/A:1014447700775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014447700775

Navigation