Skip to main content
Log in

Polynitroxylated Starch/TPL Attenuates Cachexia and Increased Epithelial Permeability Associated with TNBS Colitis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Free radicals play an important role in the initiation and progression of inflammatory bowel disease (IBD). Therefore, the reduction or elimination of adverse oxidant effects can provide novel therapy for IBD. Here, the antioxidant capacity and protective effects of a new class of chemically modified hetastarch (polynitroxyl starch, or PNS) plus 4-hydroxyl-2,2,6,6-tetramethylpiperidine-N-oxyl (Tempol or TPL) (PNS/TPL) were assessed in a model of colitis. The superoxide scavenging capacity of PNS/TPL—that is, the inhibition of the reduction of cytochrome c in the presence of xanthine/xanthine oxidase (X/XO)—was evaluated in vitro. The effects of PNS/TPL on X/XO–induced neutrophil endothelial adhesion in vitro were investigated. Also, this study tested the protection produced by PNS/TPL in a mouse model of trinitrobenzene sulfonic acid (TNBS)–induced colitis. PNS/TPL was given intravenously immediately before (<30 min) and intraperitoneally at 24 and 72 hr after TNBS induction. The body weight and survival rate of the mice were checked daily. Colonic mucosal damage was assessed on the 7th day by measuring intestinal permeability to Evans blue (EB) in vivo. The ability of PNS to reoxidize bioreduced TPL was documented by whole-body electron paramagnetic resonance (EPR) detection. We found that PNS or TPL exhibits superoxide dismutase (SOD)–like activity, with approximately 2% of SOD activity occurring on a molar basis. The endothelial–neutrophil adherence induced by X/XO was significantly inhibited by PNS/TPL but not by TPL alone. PNS/TPL protected against cachexia and mortality, both usually induced by TNBS. Epithelial permeability was increased significantly in TNBS mice but was ameliorated by the administration of PNS/TPL. In conclusion, PNS/TPL may be beneficial in the treatment or prevention of IBD through its antioxidant effects, which inhibit oxidant-mediated leukocyte adhesion and injury to endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Schreiber, S., A. Raedler, W. F. Stenson, and R. P. MacDermott. 1992. The role of the mucosal immune system in inflammatory bowel disease. Gastroenterol. Clin. North Am. 21:451–502.

    Google Scholar 

  2. Grisham, M. B. and D. N. Granger. 1998. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig. Dis. Sci. 33:6S–15S.

    Google Scholar 

  3. Grisham, M. B. 1994. Oxidants and free radicals in inflammatory bowel disease. Lancet 344:859–861.

    Google Scholar 

  4. Klebanoff, S. J. 1992. Oxygen metabolites from phagocytes. In J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds. Inflammation: Basic principles and clinical correlates1. New York: Raven Press, 541–588.

  5. Harris, M. L., H. J. Schiller, P. M. Reilly, M. Donowitz, M. B. Grisham, and G. B. Bulkley. 1992. Free radicals and other reactive oxygen metabolites in inflammatory bowel disease. Cause, consequence, or epiphenomenon? Pharmacol. Ther. 53:375–408.

    Google Scholar 

  6. Grisham, M. B. 1993. Role of reactive oxygen metabolites in inflammatory bowel disease. Curr. Opin. Gastroenterol. 9:971–980.

    Google Scholar 

  7. Hahn, S. M., C. M. Krishna, A. Samuni, J. B. Mitchell, and A. Russo. 1991. Mn (III)-desferrioxamine superoxide dismutasemimic: Alternative modes of action. Arch. Biochem. Biophys. 288:215–219.

    Google Scholar 

  8. Rabinowitch, H. D., G. M. Rosen, and I. Fridovich. 1989. A mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfate. Free Radic. Biol. Med. 6:45–48.

    Google Scholar 

  9. Beyer, W. F. and I. Fridovich. 1989. Characterization of a superoxide dismutase mimic prepared from desferrioxamine and MnO2. Arch. Biochem. Biophys. 15: 271:149–156.

    Google Scholar 

  10. Nagano, T., T. Hirano, and M. Hirobe. 1989. Superoxide dismutase mimics based on iron in vivo. J. Biol. Chem. 264:9243–9249.

    Google Scholar 

  11. Huber, K. R., R. Sridhar, E. H. Griffith, E. L. Amma, and J. Roberts. 1987. Superoxide dismutase-like activities of copper(II) complexes tested in serum. Biochim. Biophys. Acta 915:267–276.

    Google Scholar 

  12. Samuni, A., C. M. Krishna, P. Riesz, E. Finkelstein, and A. Russo. 1988. A novel metal-free low molecular weight superoxide dismutase mimic. J. Biol. Chem. 263:17921–17924.

    Google Scholar 

  13. Weiss, R. H., A. G. Flickinger, W. J. Rivers, M. M. Hardy, K. W. Aston, U. S. Ryan, and D. P. Riley. 1993. Evaluation of activity of putative superoxide dismutase mimics. Direct analysis by stopped-flow kinetics. J. Biol. Chem. 268:23049–23054.

    Google Scholar 

  14. Krishna, M. C. and A. Samuni. 1994. Nitroxides as antioxidants. Meth. Enzymol. 234:580–589.

    Google Scholar 

  15. Mitchell, J. B., A. Samuni, M. C. Krishna, W. G. Degraff, M. S. Ahn, U. Samuni, and A. Russo. 1990. Biologically active metal-independent superoxide dismutase mimics. Biochemistry 29:2802–2807.

    Google Scholar 

  16. Samuni, A., D. Winkelsberg, A. Pinson, S. M. Hahn, J. B. Mitchell, and A. Russo. 1991. Nitroxide stable radicals protect beating cardiomyocytes against oxidative damage. J. Clin. Invest. 87:1526–1530.

    Google Scholar 

  17. Samuni, A., D. Godinger, J. Aronovitch, A. Russo, and J. B. Mitchell. 1991. Nitroxides block DNA scission and protect cells from oxidative damage. Biochemistry 30:555–561.

    Google Scholar 

  18. Mohsen, M., A. Pinson, R. Zhang, and A. Samuni. 1995. Do nitroxides protect cradiomyoctes from hydrogen peroxide or superoxide? Mol. Cell. Biochem. 145:103–110.

    Google Scholar 

  19. Beit-Yannai, E., R. Zhang, V. Trembovler, A. Samuni, and E. Shohami. 1996. Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat. Brain Res. 717:22–28.

    Google Scholar 

  20. Samuni, A., J. B. Mitchell, W. DeGraff, C. M. Krishma, U. Samuni, and A. Russo. 1991. Nitroxide SOD-mimics: Modes of action. Free Radic. Res. Commun. 12-13(pt. 1):187–194.

    Google Scholar 

  21. Rachmilewitz, D., F. Karmeli, E. Okon, and A. Samuni. 1994. A novel antiulcergenic stable radical prevents gastric mucosal lesions in rats. Gut 35:1181–1188.

    Google Scholar 

  22. Karmeli, F., R. Eliakim, E. Okon, A. Samuni, and D. Rachmilewitz. 1995. A stable nitroxide radical effectively decreases mucosal damage in experimental colitis. Gut 37:386–393.

    Google Scholar 

  23. Kuppusamy, P., P. Wang, J. L. Zweier, M. C. Krishna, J. B. Mitchell, L. Ma, C. E. Trimble, and C. J. C. Hsia. 1996. Electron paramagnetic resonance imaging of rat heart with nitroxide and polynitroxyl-albumin. Biochemistry 35:7051–7057.

    Google Scholar 

  24. Russell, J., N. Okayama, J. S. Alexander, D. N. Granger, and C. J. C. Hsia. 1998. Pretreatment with polynitroxyl albumin (PNA) inhibits ischemia-reperfusion induced leukocyte-endothelial cell adhesion. Free Radic. Biol. Med. 25:153–159.

    Google Scholar 

  25. Okayama, N., J. H. Park, L. Coe, D. N. Granger, L. Ma, C. J. Hisa, and J. S. Alexander. 1999. Polynitroxyl alpha-alpha-hemoglobin (PNH) inhibits peroxide-and superoxide-mediated neutrophil adherence to human endothelial cells. Free Radic. Res. 31(pt. 1):53–58.

    Google Scholar 

  26. Treib, J., J. F. Baron, M. T. Grauer, and R. G. Strauss. 1999. An international view of hydroxyethyl starches. Intensive Care Med. 25:258–268.

    Google Scholar 

  27. Saito, K., H. Yoshioka, N. Ito, S. Kazama, H. Tanizawa, Y. Lin, H. Watanabe, T. Ogata, and H. Kamada. 1997. Spatiotemporal ESR-CT study on the metabolism of spin-labeled polysaccharide in a mouse. Biol. Pharm. Bull. 20:904–909.

    Google Scholar 

  28. Tateishi, H., K. Mitsuyama, A. Toyonaga, M. Tomoyose, and K. Tanikawa. 1997. Role of cytokines in experimental colitis: Relation to intestinal permeability. Digestion 58:271–281.

    Google Scholar 

  29. Crapo, J. D., J. M. McCord, and I. Fridovich, I. 1978. Preparation and assay of superoxide dismutases. Methods Enzymol. 53:382–393.

    Google Scholar 

  30. McCord, J. and I. Fridovich. 1969. Superoxide dismutases. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055.

    Google Scholar 

  31. Fridovich, I. 1989. Superoxide dismutases. An adaption to a paramagnetic gas. J. Biol. Chem. 264:7761-7764.

    Google Scholar 

  32. Boccu, E., G. P. Velo, and F. M. Veronese. 1982. Pharmacokinetic properties of polyethylene glycol derivatized superoxide dismutase. Pharmacol. Res. Commun. 14:113–120.

    Google Scholar 

  33. Veronese, F. M., E. Boccu, O. Schiavon, G. P. Velo, A. Conforti, L. Franco, and R. Milanino. 1983. Anti-inflammatory and pharmacokinetic properties of superoxide dismutase derivatized with polyethylene glycol via active esters. J. Pharm. Pharmacol. 35:757–758.

    Google Scholar 

  34. Miura, Y., H. Utsumi, and A. Hamada. 1993. Antioxidant activity of nitroxide radicals in lipid peroxidation of rat liver microsomes. Arch. Biochem. Biophys. 300:148–156.

    Google Scholar 

  35. Oz, M. C., B. A. Zikria, P. F. McLeod, and S. J. Popilkis. 1991. Hydroxyethyl starch macromolecules and superoxide dismutase effects on myocardial reperfusion injury. Am. J. Surg. 162:59–62.

    Google Scholar 

  36. Schell, R. M., D. J. Cole, R. L. Schultz, and T. N. Osborne. 1992. Temporary cerebral ischemia, effects of pentastarch or albumin on reperfusion injury. Anesthesiology 77:86–92.

    Google Scholar 

  37. Oz, M. C., M. F. FitzPatrick, B. A. Zirka, D. J. Pinsky, and W. N. Duran. 1995. Attenuation of microvascular permeability dysfunction in postischemic striated muscle by hydroxyethyl starch. Microvasc. Res. 50:71–79.

    Google Scholar 

  38. Willms, C. D., I. J. Dawidson, J. M. Armstrong, M. Kwon, R. Risser, Z. F. Sandor, and J. T. Sentementes. Pentafraction-Du Pont versus albumin for resuscitation of a lethal intestinal ischemic shock in rats. Circ. Shock 33:216-221.

  39. Pieper, G. M., G. J. Gross, and B. Kalyanaraman. 1990. An ESR study of the nitroxide radical of pentastarch-conjugated deferoxamine. Free Radic. Biol. Med. 9:211–218.

    Google Scholar 

  40. Keshavarzian, A., S. Sedghi, J. Kanofsky, T. List, C. Robinson, C. Ibrahim, and D. Winship. 1992. Excessive production of reactive oxyten metabolites by inflamed colon: Analysis by chemiluminescence probe. Gastroenterology 103:177–185.

    Google Scholar 

  41. Simmonds, N. J., R. E. Allen, T. R. Stevens, R. N. Someren, D. R. Blake, and D. S. Rampton. 1992. 103:186–96.

  42. Oshitani, N., A. Kitano, H. Okabe, S. Nakamura, T. Matsumato, and K. Kobayashi. 1993. Location of superoxide anion generation in human colonic mucosa obtained by biopsy. Gut 34:936–938.

    Google Scholar 

  43. Emerit, J., S. Pelletier, D. Tosoni-Verilgnue, and M. Mollet. 1989. Phase II trial of copper ?zinc superoxide dismutase (Cu ?Zn SOD) in treatment of Crohn's disease. Free Radic. Biol. Med. 7:145–149.

    Google Scholar 

  44. Keshavarzian, A., G. Morgan, S. Sedghi, and J. H. Gordon. 1990. Role of reactive oxygen metabolites in experimental colitis. Gut 31:786–790.

    Google Scholar 

  45. Keshavarzian, A., J. Haydeck, R. Zahihi, M. Doria, M. D'Astice, and J. R. J. Sorenson. 1992. Agents capable of eliminating reactive oxygen species catalase, WR-2721 or Cu (II)2(3,5-DIPS)4 decreases experimental colitis. Dig. Dis. Sci. 37:1866–1873.

    Google Scholar 

  46. Hahn, S. M., F. J. Sullivan, A. M. DeLuca, M. C. Krishna, N. Wersto, D. Venzon, A. Russo, and J. B. Mitchell. 1997. Evaluation of Tempol radioprotection in a murine tumor model. Free Radic. Biol. Med. 22:1211–1216.

    Google Scholar 

  47. Fuchs, J., H. J. Freisledben, M. Podda, G. Zimmer, R. Milbradt, and L. Packer. 1993. Nitroxide radical biostability in skin. Free Radic. Biol. Med. 15:415–423.

    Google Scholar 

  48. Chen, K. and H. M. Swartz. 1988. Oxidation of hydroxylamines to nitroxide spin labels in living cells. Biochim. Biophys. Acta. 970:270–277.

    Google Scholar 

  49. Suzuki, M., M. B. Grisham, and D. N. Granger. 1994. Leukocyte- endothelial cell adhesive interactions: Role of xanthine oxidase- derived oxidants. J. Leuk. Biol. 50:488–494.

    Google Scholar 

  50. Ichikawa, H., S. Flores, P. R. Kvietys, R. E. Wolf, T. Yoshikawa, D. N. Granger, and T. Y. Aw. 1997. Molecular mechanisms of anoxia ?reoxygenation-induced neutrophil adherence to cultured endothelial cells. Cir. Res. 81:922–923.

    Google Scholar 

  51. Bjarnason, I., A. Macpherson, and D. Hollander. 1995. Intestinal permeability: An overview. Gastroenterology 108:1566–1581.

    Google Scholar 

  52. Saria, A. and J. M. Lundberg. 1983. Evans blue fluorescence: Quantitative and morphological evaluation of vascular permeability in animal tissues. J. Neurosci. Meth. 8:41–49.

    Google Scholar 

  53. Lange, S., D. S. Delbro, and E. Jennisehe. Evans blue permeation of intestinal mucosa in rat. Scand. J. Gastroenterol. 29:38-46.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Ma, L., Oshima, T. et al. Polynitroxylated Starch/TPL Attenuates Cachexia and Increased Epithelial Permeability Associated with TNBS Colitis. Inflammation 26, 1–11 (2002). https://doi.org/10.1023/A:1014420327417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014420327417

Navigation