Skip to main content
Log in

Identification and characterization of T-DNA inserts by T-DNA fingerprinting

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A T-DNA fingerprinting method is presented based on amplified fragmentlength polymorphism with an anchored polymerase chain reaction step. Thismethod allows discrimination between different T-DNA inserts in stablytransformed plants. The technique was evaluated by analyzing 51 transgenicArabidopsis lines that had been characterized in detail by genomicblotting. Comparison of the obtained fingerprints with the availableintegration information demonstrated that fingerprints were correlated tothe predicted patterns, except for the inverted repeat junctions and forthose inserts with large deletions at the left or right border. Ourexperiments show that by using T-DNA fingerprinting multi-copy transgeniclines can be eliminated efficiently so that the technique can be used toenrich a population of transgenic plants for putative single-copytransformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • De Buck, S., A. Jacobs, M. Van Montagu & A. Depicker, 1999. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20: 295–304.

    Google Scholar 

  • De Buck, S., C. De Wilde, M. Van Montagu & A. Depicker, 2000a. Vector backbone sequences are frequently integrated into the genome of transgenic Arabidopsis and tobacco plants. Mol Breeding: in press.

  • De Buck, S., C. De Wilde, M. Van Montagu & A. Depicker, 2000b. Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant-Microbe Interact 13: 658–665.

    Google Scholar 

  • De Neve, M., S. De Buck, A. Jacobs, M. Van Montagu & A. Depicker, 1997. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from ligation of separate T-DNAs. Plant J 11: 15–29.

    Google Scholar 

  • De Neve, M., H. Van Houdt, A.M. Bruyns, M. Van Montagu & A. Depicker, 1998. Screening for transgenic lines with stable and suitable accumulation levels of a heterologous protein. In: C. Cunningham & A.J.R. Porter (Eds.), Recombinant Proteins from Plants: Production and Isolation of Clinically Useful Compounds, (Methods in Biotechnology, Vol. 3), pp. 203–227. Humana Press, Totowa, NJ.

    Google Scholar 

  • De Neve, M., S. De Buck, C. DeWilde, H. Van Houdt, I. Strobbe, A. Jacobs, M. Van Montagu & A. Depicker, 1999. Gene silencing results in instability of antibody production in transgenic plants. Mol Gen Genet 260: 582–592.

    Google Scholar 

  • Depicker, A. & M. Van Montagu, 1997. Post-transcriptional gene silencing in plants. Curr Opin Cell Biol 9: 373–382.

    Google Scholar 

  • Frey, M., C. Stettner & A. Gierl, 1998. A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J 13: 717–721.

    Google Scholar 

  • Gelvin, S.B., 1998. The introduction and expression of transgenes in plants. Curr Opin Biotechnol 9: 227–232.

    Google Scholar 

  • Gheysen, G., R. Villarroel & M. Van Montagu, 1991. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5: 287–297.

    Google Scholar 

  • Gheysen, G., G. Angenon & M. Van Montagu, 1998. Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In: K. Lindsey (Ed.), Transgenic Plant Research, pp. 1–33. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Hobbs, S.L.A., T.D. Warkentin & C.M.O. DeLong, 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26.

    Google Scholar 

  • Jorgensen, R., C. Snyder & J.D.G. Jones, 1987. T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 471–477.

    Google Scholar 

  • Kononov, M.E., B. Bassuner & S.B. Gelvin, 1997. Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11: 945–957.

    Google Scholar 

  • Krizkova, L. & M. Hrouda, 1998. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J 16: 673–680.

    Google Scholar 

  • Mayerhofer, R., Z. Koncz-Kalman, C. Nawrath, G. Bakkeren, A. Crameri, K. Angelis, G.P. Redei, J. Schell, B. Hohn & C. Koncz, 1991. T-DNA integration: a model of illigitimate recombination in plants. EMBO J 10: 697–704.

    Google Scholar 

  • Muskens, M., A. Vissers, J. Mol & J. Kooter, 2000. Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43: 243–260.

    Google Scholar 

  • Ohba, T., Y. Yoshioka, C. Machida & Y. Machida, 1995. DNA rearrangements associated with the integration of T-DNA in tobacco: an example of multiple duplications of DNA around the integration target. Plant J 7: 157–164.

    Google Scholar 

  • Ramanathan, V. & K. Veluthambi, 1995. Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA. Plant Mol Biol 28: 1149–1154.

    Google Scholar 

  • Spertini, D., C. Béliveau & G. Bellemare, 1999. Screening of transgenic plants by amplification of unknown genomic DNA flanking T-DNA. BioTechniques 27: 308–314.

    Google Scholar 

  • Stam, M., R. de Bruin, S. Kenter, R.A.L. van der Hoorn, R. van Blokland, J.N.M. Mol & J.M. Kooter, 1997. Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant J 12: 63–82.

    Google Scholar 

  • van der Graaff, E., A. den Dulk-Ras & P.J.J. Hooykaas, 1996. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants. Plant Mol Biol 31: 677–681.

    Google Scholar 

  • Van Den Broeck, D., T. Maes, M. Sauer, J. Zethof, P. De Keukeleire, M. D'Hauw, M. Van Montagu & T. Gerats, 1998. Transposon Display identifies individual transposable elements in high copy number lines. Plant J 13: 121–129.

    Google Scholar 

  • Vogel, J.M. & P.A. Scolnik, 1997. Direct amplification from microsatellites: detection of simple sequence repeat-based polymorphisms without cloning. In: G. Caetano-Anollés & P.M. Gresshoff (Eds.), DNA Markers: Protocols, Applications and Overviews, pp. 133–150. Wiley-VCH, New York.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.

    Google Scholar 

  • Wenck, A., M. Czakó, I. Kanevski & L. Márton, 1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediate transformation. Plant Mol Biol 34: 913–922.

    Google Scholar 

  • Witsenboer, H., J. Vogel & R.W. Michelmore, 1997. Identification, genetic localization, and allelic diversity of selectively ampli-fied microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40: 923–936.

    Google Scholar 

  • Yephremov, A. & H. Saedler, 2000. Display and isolation of transposon-flanking sequences starting from genomic DNA or RNA. Plant J 21: 495–505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. De Loose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theuns, I., Windels, P., De Buck, S. et al. Identification and characterization of T-DNA inserts by T-DNA fingerprinting. Euphytica 123, 75–84 (2002). https://doi.org/10.1023/A:1014415619527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014415619527

Navigation