Skip to main content
Log in

Thermal Investigations of M[La(C2O4)3]⋅xH2O (M=Cr(III) and Co(III))

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The complexes M[La(C2O4)3]⋅xH2O (x=10 for M=Cr(III) and x=7 forM=Co(III)) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR, reflectance and powder X-ray diffraction (XRD) studies. Thermal investigations using TG, DTG and DTA techniques in air of chromium(III)tris(oxalato)lanthanum(III)decahydrate, Cr[La(C2O4)3]⋅10H2O showed the complex decomposition pattern in air. The compound released all the ten molecules of water within ∼170°C, followed by decomposition to a mixture of oxides and carbides of chromium and lanthanum, i.e. CrO2, Cr2O3, Cr3O4, Cr3C2, La2O3, La2C3, LaCO, LaCrOx (2<x<3) and C at ∼1000°C through the intermediate formation of several compounds of chromium and lanthanum at ∼374, ∼430 and ∼550°C. Thecobalt(III)tris(oxalato)lanthanum(III)heptahydrate, Co[La(C2O4)3]⋅7H2O becomes anhydrous around 225°C, followed by decomposition to Co3O4, La2(CO3)3 and C at ∼340°C and several other mixture species of cobalt and lanthanum at∼485°C. The end products were identified to be LaCoO3, Co3O4, La2O3, La2C3, Co3C, LaCO and C at ∼ 2>1000°C. DSC studies in nitrogen of both the compounds showed several distinct steps of decomposition along with ΔH and ΔSvalues. IR and powder XRD studies have identified some of the intermediate species. The tentative mechanisms for the decomposition in air are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Krishnamurty and G. M. Harris, Chem. Rev., 61 (1961) 213.

    Article  CAS  Google Scholar 

  2. D. Dollimore, D. L. Griffiths and D. Nicholson, J. Chem. Soc., (1963) 2617.

  3. W. W. Wendlandt and E. L. Simmons, J. Inorg. Nucl. Chem., 27 (1965) 2317.

    Article  CAS  Google Scholar 

  4. D. Broadbent, D. Dollimore and J. Dollimore, J. Chem. Soc., A, (1967) 451.

  5. G. M. Bancroft, K. G. Dharmawardena and A. G. Maddock, Inorg. Chem., 9 (1970) 223.

    Article  CAS  Google Scholar 

  6. K. Nagase, K. Sato and N. Tanaka, Bull. Chem. Soc. Jpn., 48 (1975) 868.

    Article  CAS  Google Scholar 

  7. A. E. Underhill and D. M. Watkins, Chem. Soc. Rev., 9 (1980) 429.

    Article  CAS  Google Scholar 

  8. T. K. Sanyal and N. N. Dass, J. Inorg. Nucl. Chem., 42 (1980) 811.

    Article  CAS  Google Scholar 

  9. N. Deb, P. K. Gogoi and N. N. Dass, Bull. Chem. Soc. Jpn., 61 (1988) 4485.

    Article  CAS  Google Scholar 

  10. N. Deb, P. K. Gogoi and N. N. Dass, J. Thermal Anal., 35 (1989) 27.

    Article  CAS  Google Scholar 

  11. N. Deb, P. K. Gogoi and N. N. Dass, Thermochim. Acta, 140 (1989) 145.

    Article  CAS  Google Scholar 

  12. N. Deb, P. K. Gogoi and N. N. Dass, Thermochim. Acta, 145 (1989) 77.

    Article  CAS  Google Scholar 

  13. N. Deb, P. K. Gogoi and N. N. Dass, J. Thermal Anal., 36 (1990) 465.

    Article  CAS  Google Scholar 

  14. N. Deb, P. K. Gogoi and N. N. Dass, Thermochim. Acta, 198 (1992) 395.

    Article  CAS  Google Scholar 

  15. N. Deb, S. D. Baruah and N. N. Dass, J. Thermal Anal., 45 (1995) 457.

    CAS  Google Scholar 

  16. N. Deb, S. D. Baruah and N. N. Dass, Thermochim. Acta, 285 (1996) 301.

    Article  CAS  Google Scholar 

  17. N. Deb, S. D. Baruah, N. Sen Sarma and N. N. Dass, Thermochim. Acta, 320 (1998) 53.

    Article  CAS  Google Scholar 

  18. N. Deb, S. D. Baruah, N. Sen Sarma and N. N. Dass, Thermochim. Acta, 329 (1999) 129.

    Article  CAS  Google Scholar 

  19. S. K. Awasthi, K. L. Chawla and D. M. Chakraburty, J. Inorg. Nucl. Chem., 36 (1974) 2521.

    Article  CAS  Google Scholar 

  20. H. S. Gopalakhrishna-Murthy, M. Subba Rao and T. R. Narayanan Kutty, J. Inorg. Nucl. Chem., 37 (1975) 1875.

    Article  Google Scholar 

  21. H. S. Gopalakhrishna-Murthy, M. Subba Rao and T. R. Narayanan Kutty, J. Inorg. Nucl. Chem., 38 (1976) 417.

    Article  Google Scholar 

  22. B. D. Dalvi and A. M. Chavan, J. Thermal Anal., 14 (1978) 331.

    Article  CAS  Google Scholar 

  23. M. Verdaguer, M. Julve, A. Michalowicz and O. Khan, Inorg. Chem., 22 (1983) 2624.

    Article  CAS  Google Scholar 

  24. A. S. Brar, S. Brar and S. S. Sandhu, J. Thermal Anal., 31 (1986) 1083.

    Article  CAS  Google Scholar 

  25. M. G. Usha, M. Subba Rao and T. R. Narayanan Kutty, J. Thermal Anal., 31 (1986) 7.

    Article  CAS  Google Scholar 

  26. N. Deb, S. D. Baruah and N. N. Dass, Thermochim. Acta, 326 (1999) 43.

    Article  CAS  Google Scholar 

  27. N. Deb, Thermochim. Acta, 338 (1999) 27.

    Article  CAS  Google Scholar 

  28. K. Nagase, Chem. Lett. Jpn., 7 (1972) 587.

    Article  Google Scholar 

  29. K. Nagase, Bull. Chem. Soc. Jpn., 46 (1973) 144.

    Article  CAS  Google Scholar 

  30. N. W. Alcock, J. Chem. Soc. Dalton Trans., (1973) 1614.

  31. N. D. Dahale, K. L. Chawla, N. C. Jayadevan and V. Venugopal, Thermochim. Acta, 293 (1997) 163.

    Article  CAS  Google Scholar 

  32. K. Nag and Ajoy Roy, Thermochim. Acta, 17 (1976) 247.

    Article  CAS  Google Scholar 

  33. Om Prakash, P. Ganguly, G. Rama Rao, C. N. R. Rao, V. G. Bhide and D. S. Rajoria, Mater. Res. Bull., 7 (1974) 1173.

    Article  Google Scholar 

  34. Yung-Frang Yu. Yao, J. Catal., 36 (1975) 266.

    Article  CAS  Google Scholar 

  35. D. J. Anderton and F. R. Sale, Powder Metall., 22 (1979) 14.

    CAS  Google Scholar 

  36. N. Deb, S. D. Baruah and N. N. Dass, J. Therm. Anal. Cal., 59 (2000) 791.

    Article  CAS  Google Scholar 

  37. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, New York 1988, p. 734.

    Google Scholar 

  38. M. G. Usha, M. Subba Rao and T. R. Narayanan Kutty, Thermochim. Acta, 43 (1981) 35.

    Article  CAS  Google Scholar 

  39. F. F. Bentley, L. D. Smithson and A. L. Rozek, Infrared Spectra and Characteristic Frequencies, 300–700 cm-1, Wiley, New York 1968.

    Google Scholar 

  40. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed., Wiley, New York 1969, p. 245.

    Google Scholar 

  41. R. P. Turcotte, J. D. Sawyer and L. Eyring, Inorg. Chem., 8 (1965) 238.

    Article  Google Scholar 

  42. Joint Committee on Powder Diffraction Standards, Inorganic Index to the Powder Diffraction File, 1971, 1601, Parklane, Pennsylvania.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, N. Thermal Investigations of M[La(C2O4)3]⋅xH2O (M=Cr(III) and Co(III)). Journal of Thermal Analysis and Calorimetry 67, 699–712 (2002). https://doi.org/10.1023/A:1014321309138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014321309138

Navigation