Skip to main content
Log in

Nonlinear Dynamics of Floating Cranes

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear dynamic responses of moored crane vessels to regular wavesare investigated experimentally and theoretically. The main subject ofinterest are nonlinear phenomena like bifurcations and the existence ofmultiple attractors. In the experimental part of the work, a mooredmodel of a crane vessel has been excited by regular waves in a wavetank. A special mechanism has been developed to model the nonlinearbehavior of real mooring systems. The theoretical part of the workconcerns the mathematical modeling of the floating cranes. Twomathematical models of different levels of complexity are presented. Twodifferent tools are used to systematically determine the responses ofthe systems to periodic forcing of waves. Firstly, the path-followingtechniques in combination with numerical integration of equations ofmotion applied to a full nonlinear model give insight into the dynamicsin time domain. Secondly, the multiple scales method allows for ananalytical investigation of simplified nonlinear models in frequencydomain. Many results of computations for two crane vessels, barge andship, are presented. Special attention is paid to oscillations near thefrequencies of primary resonances and to subharmonic motions. Anexcellent agreement is found between the results of time-domain andfrequency-domain analysis. The computational examples chosen correspondto the models used not only in the present experiments but in theexperiments of others as well. The results presented in the work allow usto draw several important conclusions concerning the dynamic behavior offloating cranes during offshore operations. Both the developed modelsand the analytical tools can be used to identify the limits of theoperating range of floating cranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E. L. and Georg, K., Numerical Continuation Methods, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  2. Balachandran, B., Li, Y.-Y., and Fang, C.-C., 'A mechanical filter concept for control of non-linear crane load oscillations', Journal of Sound and Vibration 228(3), 1999, 651–682.

    Google Scholar 

  3. Baumgarten, R., Dynamisches Nachbeulverhalten parametrisch erregter, dünnwandiger Schalenfelder, Fortschr. Ber. VDI, Reihe 1, Nr. 314, VDI-Verlag, Düsseldorf, 1999

    Google Scholar 

  4. Clauss, G., 'Entwicklungstendenzen der Offshoretechnik', Bauingenieur 67, 1992, 447–459.

    Google Scholar 

  5. Clauss, G. F., Abt, C., and Vannahme, M., 'Schwimmkrane als technisches Problem der Nichtlinearen Dynamik-Teilprojekt: Experimentelle Validierung der numerischen Simulation', Institut für Schiffs-und Meerestechnik der Technischen Universität Berlin, Berlin, 2000.

    Google Scholar 

  6. Clauss, G. and Riekert, T., 'Untersuchungen der Einsatzgrenzen von Kranschiffen in Wellengruppen', in Entwicklung in der Schiffstechnik (Statusseminar), Germanischer Lloyd Hamburg, 1989, pp. 106-131.

  7. Clauss, G. and Riekert, T., 'Operational limitations of offshore crane vessels', in Proceedings Offshore Technology Conference (OTC), Houston, TX, OTC 6217, Vol. I, OTC, 1990, pp. 161–170.

    Google Scholar 

  8. Clauss, G. and Riekert, T., 'Influence of load motion control on the operational limitations of large crane vessels in severe environment', in Proceedings International Conference on Behaviour of Offshore Structures (BOSS'92, London), Vol. 2, M. Patel and R. Gibbins (eds.), BPP Technical Services, London, 1992, pp. 1112–1125.

    Google Scholar 

  9. Doedel, E., 'Numerical analysis of bifurcation problems', in Summer School on Nonlinear Equations, A. Griewank and F. Jarre, (eds.), Technical University Hamburg-Harburg, 1997, pp. 1-132.

  10. Yuan, G. H., Hunt, B. R., Grebogi, C., Ott, E., Yorke, J. A., and Kosterlich, E. J., 'Design and control of shipboard cranes', in Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, CA, September 14-17, ASME, New York, 1997, pp. 1–7.

    Google Scholar 

  11. Hairer, E., Solving Ordinary Differential Equations, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  12. Jiang, T., 'Untersuchung nichtlinearer Schiffsdynamik mit Auftreten von Instabilität und Chaos an Beispielen aus der Offshoretechnik', Institut für Schiffbau der Universität Hamburg, Bericht Nr. 512, 1991.

  13. Jiang, T., Schellin, T. E., and Östergaard, C., 'Analyse und Bewertung der Arbeitsbedingungen von schwimmenden Offshore-Kranen im Seegang', in Jahrbuch der Schiffbautechnischen Gesellschaft, 1990, pp. 441-457.

  14. Keller, H. B., 'Numerical solution of bifurcation and nonlinear eigenvalue problems', in Applications of Bifurcation Theory, P. H. Rabinowitz (ed.), Academic Press, New York, 1977, pp. 359–384.

    Google Scholar 

  15. Kral, R., Kreuzer, E., and Wilmers, C., 'Nonlinear oscillations of a crane ship', in Proceedings of the 3rd International Conference on Industrial and Applied Mathematics 1995, Suppl. 4, E. Kreuzer and O. Mahrenholtz (eds.), Akademie Verlag, Berlin, 1996, pp. 5–8.

    Google Scholar 

  16. McCormick, F. and Witz, J., 'An investigation into the parameter excitation of suspended loads during crane vessel operations', Underwater Technology 19, 1993, 30–39.

    Google Scholar 

  17. Mohr, A. and Schellin, T. E. (eds.), 'Rückstellkraftcharakteristik verankerter Schwimmkrane', Technical Report FG 98.069, Germanischer Lloyd, 1998.

  18. Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979.

    Google Scholar 

  19. Oh, I.-G. and Nayfeh, A. H., 'Nonlinearly interacting responses of the two rotational modes of motion-Roll and pitch motions', in Proceedings of the 21st Symposium on Naval Hydrodynamics, Trondheim, National Academy Press, Washington, DC, 1997, pp. 205–219.

    Google Scholar 

  20. Patel, M., Brown, D., and Witz, J., 'Operability analysis for a monohull crane vessel', Transactions of the Royal Institution of Naval Architects 129, 1987, 103–113.

    Google Scholar 

  21. Patel, M. H. and Witz, J. A., Compliant Offshore Structures, Butterworth-Heinemann, Oxford, 1991.

    Google Scholar 

  22. Riekert, T., Die Dynamik von Schwimmkranen mit hängender Last, René F. Wilfer, Spardorf, 1992.

    Google Scholar 

  23. Schellin, T. E., Jiang, T., and Östergaard, C., 'Response analysis and operating limits of crane ships', Journal of Ship Research 37(3), 1993, 225–238.

    Google Scholar 

  24. Shampine, L. F. and Gordon, M. K., Computer-Lösung gewöhnlicher Differentialgleichungen, Vieweg, Braunschweig, 1984.

    Google Scholar 

  25. Witz, J., 'Parametric excitation of crane loads in moderate sea states', Ocean Engineering 22, 1995, 411–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellermann, K., Kreuzer, E. & Markiewicz, M. Nonlinear Dynamics of Floating Cranes. Nonlinear Dynamics 27, 107–183 (2002). https://doi.org/10.1023/A:1014256405213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014256405213

Navigation