Skip to main content
Log in

A Novel Navigation Method for Autonomous Mobile Vehicles

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel navigation method for Autonomous Mobile Vehicle in unknown environments. The proposed navigator consists of an Obstacle Avoider (OA), a Goal Seeker (GS), a Navigation Supervisor (NS) and an Environment Evaluator (EE). The fuzzy actions inferred by the OA and the GS are weighted by the NS using the local and global environmental information and fused through fuzzy set operation to produce a command action, from which the final crisp action is determined by defuzzification. The EE tunes the supports of the fuzzy sets for the OA and the NS; therefore, the capability of the navigation method is enhanced. Simulation shows that the navigator is able to perform successful navigation task in various unknown or partially known environments, and it has satisfactory ability in tackling moving obstacles. More importantly, it has smooth action and exceptionally good robustness to sensor noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell, J. S. B.: An algorithm approach to some problems in terrain navigation, Artificial Intelligence 37 (1988), 171–201.

    Google Scholar 

  2. Janét, J. A., Luo, R. C., and Kay, M. G.: Autonomous mobile robot motion planning and geometric beacon collection using traversability vector, IEEE Trans. Robotics Automat. 13(1) (1997), 132–140.

    Google Scholar 

  3. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots, Internat. J. Robotics Res. 5(1) (1986), 90–98.

    Google Scholar 

  4. Hwang, Y. K. and Ahuja, N.: A potential field approach to path planning, IEEE Trans. Robotics Automat. 8(1) (1992), 23–32.

    Google Scholar 

  5. Guldner, J. and Utkin, V. I.: Sliding mode control for gradient tracking and robot navigation using artificial potential fields, IEEE Trans. Robotics Automat. 11(2) (1995), 247–254.

    Google Scholar 

  6. Brooks, R. A.: Solving the find-path problem by good representation of free space, IEEE Trans. Systems Man Cybernet. 13(3) (1983), 190–197.

    Google Scholar 

  7. Brooks, R. A.: Planning collision-free motions for pick-and-place operations, Internat. J. Robotics Res. 2(4) (1983), 19–40.

    Google Scholar 

  8. Lozano-Perez, T.: Spatial planning: A configuration space approach, IEEE Trans. Comput. 32(2) (1983), 108–120.

    Google Scholar 

  9. Feng, D. and Krogh, B. H.: Satisficing feedback strategies for local navigation of autonomous mobile robots, IEEE Trans. Systems Man Cybernet. 20(6) (1990), 1383–1395.

    Google Scholar 

  10. Rao, N. S. V.: Robot navigation in unknown generalized polygonal terrains using vision sensors, IEEE Trans. Systems Man Cybernet. 25(6) (1995), 947–962.

    Google Scholar 

  11. Lumelsky, V. J., Mukhopadhyay, S., and Sun, K.: Dynamic path planning in sensor-based terrain acquisition, IEEE Trans. Robotics Automat. 6(4) (1990), 530–540.

    Google Scholar 

  12. Oommen, B. J., Iyengar, S. S., et al.: Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case, IEEE J. Robotics Automat. 3(6) (1987), 672–681.

    Google Scholar 

  13. Rao, N. A. V. and Iyengar, S. S.: Autonomous robot navigation in unknown terrains: incidental learning and environment exploration, IEEE Trans. Systems Man Cybernet. 20(6) (1990), 1443–1449.

    Google Scholar 

  14. Borestein, J. and Koren, Y.: Real-time obstacle avoidance for fast mobile robot, IEEE Trans. Systems Man Cybernet. 19(5) (1989), 1179–1186.

    Google Scholar 

  15. Borestein, J. and Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots, IEEE J. Robotics Automat. 7(3) (1991), 278–288.

    Google Scholar 

  16. Chung, J. H. and Ahuja, N.: An analytical tractable potential field model of free space and its application in obstacle avoidance, IEEE Trans. Systems Man Cybernet. 28(5) (1998), 729–736.

    Google Scholar 

  17. Koren, Y. and Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation, in: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, April 1991, pp. 1398–1404.

  18. Brooks, R. A.: A robust layered control system for a mobile robot, IEEE J. Robotics Automat. 2(1) (1986), 14–23.

    Google Scholar 

  19. Thorpe, C., Hebert, M., et al.: Vision and navigation for the Carnegie-Mellon navlab, IEEE Trans. Pattern Anal. Mach. Intell. 10(3) (1988), 362–373.

    Google Scholar 

  20. Barshan, B. and Durrant-Whyte, H. G.: Inertial navigation systems for mobile robots, IEEE Trans. Robotics Automat. 11(3) (1995) 328–342.

    Google Scholar 

  21. Arkins, R. C.: Motor schema based navigation for a mobile robot: An approach to programming by behavior, in: Proceedings of the IEEE International Conference on Robotics and Automation, 1987, pp. 264–271.

  22. Schoppers, M. J.: Universal plans for reactive robots in unpredictable environments, in: Proceedings of the Tenth International Joint Conference on Artificial Intelligence, 1987, pp. 1039–1046.

  23. Kweon, S., Kuno, Y., Watanabe, M., and Onoguchi, K.: Behavior-based intelligent robot in dynamic indoor environment, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1992, pp. 1339–1346.

  24. Gat, E., Desai, R., et al.: Behavior control for exploration of planetary surfaces, IEEE Trans. Robotics Automat. 10(4) (1994), 490–503.

    Google Scholar 

  25. Beom, H. R. and Cho, H. S.: A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning, IEEE Trans. Systems Man Cybernt. 25(3) (1995), 464–477.

    Google Scholar 

  26. Sugeno, M. and Nishida, M.: Fuzzy control of a model car, Fuzzy Sets and Systems 16 (1985), 103–113.

    Google Scholar 

  27. Pin, F. G. and Watanabe, Y.: Using fuzzy behaviors for the outdoor navigation of a car with low-resolution sensors, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robotics and Systems, 1993, pp. 548–553.

  28. Tunstel, E.: Coordination of distributed fuzzy behaviors in mobile robot control, in: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, 1995, pp. 4009–4014.

  29. Gerke, M. and Hoyer, H.: Fuzzy collision avoidance for industrial robot, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1992, pp. 510–517.

  30. Yung, N. H. C. and Ye, C.: An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning, IEEE Trans. Systems Man Cybernet. 29(2) (1999), 314–321.

    Google Scholar 

  31. Seng, T. L., Khalid, M. B., and Yusof, R.: Tuning a neuro-fuzzy controller by genetic algorithm, IEEE Trans. Systems Man Cybernet. 29(2) (1999), 226–236.

    Google Scholar 

  32. Yung, N. H. C. and Ye, C.: An intelligent navigator for mobile vehicles, in: Proceedings of the International Conference on Neural Information Processing, Hong Kong, September 24–27, 1996, pp. 948–953.

  33. Payton, D.W., Rosenblatt, J. K., and Keirsey, D. M.: Plan guided reaction, IEEE Trans. Systems Man Cybernet. 20(6) (1990), 1370–1382.

    Google Scholar 

  34. Langer, D., Rosenblatt, J. K., and Hebert,M.: A behavior-based system for off-road navigation, IEEE Trans. Robotics Automat. 10(6) (1994), 976–983.

    Google Scholar 

  35. Yen, J. and Pfluger, N.: A fuzzy logic based extension to Payton and Rosenblatt's command fusion method for mobile robot navigation, IEEE Trans. Systems Man Cybernet. 25(6) (1995), 971–978.

    Google Scholar 

  36. Yung, N. H. C. and Ye, C.: EXPECTATIONS-An autonomous mobile vehicle simulator, in: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Orlando, Florida, October 12–15, 1997, pp. 2290–2295.

  37. Latombe, J. C.: Robot Motion Planning, Kluwer Acad. Publ., Dordrecht, 1991.

    Google Scholar 

  38. Kamon, I. and Rivlin, E.: Sensory-based motion planning with global proof, IEEE Trans. Robotics Automat. 13(6) (1997), 814–822.

    Google Scholar 

  39. Lumelsky, V. J. and Stepanov, A. A.: Path-planning strategies for a point mobile automaton moving admist obstacles of arbitrary shape, Algorithmica 2 (1987), 403–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, C., Wang, D. A Novel Navigation Method for Autonomous Mobile Vehicles. Journal of Intelligent and Robotic Systems 32, 361–388 (2001). https://doi.org/10.1023/A:1014224418743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014224418743

Navigation