Skip to main content
Log in

Effect of Graded Hypoxia on High-Affinity Ca2+-ATPase Activity in Cortical Neuronal Nuclei of Newborn Piglets

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies have shown that nuclear calcium signals control a variety of nuclear functions including gene transcription, DNA synthesis, DNA repair and nuclear envelope breakdown. The present study tested the hypothesis that the activity of the neuronal nuclear high affinity Ca2+-ATPase increases as a function of decreased energy metabolism in the cerebral cortex. Studies were performed in 11 ventilated newborn piglets, age 3–5 days, divided into normoxic (Nx, n = 4) and hypoxic (Hx, n = 7) groups. The animals were exposed to a single FiO2 in the range from 0.21 to 0.05 for one hr. Cerebral tissue hypoxia was confirmed biochemically by determining brain tissue ATP and phosphocreatine levels. Neuronal nuclei were isolated and the high-affinity Ca2+-ATPase activity determined. During graded hypoxia, cerebral tissue ATP decreased from 4.80 ± 0.58 (normoxic) to 1.03 ± 0.38 (ranging from 0.61–1.63) μmol/g brain (p < 0.05) and PCr decreased from 3.94 ± 0.75 (normoxic) to 0.99 ± 0.27 (ranging from 0.50 to 1.31) μmol/g brain (p < 0.05). The total high affinity Ca2+-ATPase activity in the hypoxic nuclei increased and ranged from 541 to 662 nmol/mg protein/hr, compared to activity in normoxic group of 327 to 446 nmol/mg protein/hr. During graded hypoxia, the level of nuclear high affinity Ca2+-ATPase activity correlated inversely with ATP (r = 0.91) and PCr levels (r = 0.82), with activity increasing as tissue high energy phosphates decreased. The results demonstrate that the decrease in cerebral energy metabolism during hypoxia is linearly correlated with an increase in activity of high affinity Ca2+-ATPase in cerebral cortical nuclei from immature brain. We propose that increased nuclear membrane high affinity Ca2+-ATPase activity, leading to increased nuclear Ca2+, will result in altered expression of apoptotic genes that could initiate programmed neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Karin, M. 1992. Signal transduction from cell surface to nucleus in development and disease. FASEB J. 6:2581–2590.

    Google Scholar 

  2. Tombes, R. M., Simerly, C., Borisy, G. G., and Schatten, G. 1992. Miosis, egg activation, and nuclear envelop breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+-independent in the mouse oocyte. J. Cell Biol. 117:799–811.

    Google Scholar 

  3. Steinhardt, R. A. and Alderton, J. 1988. Intracellular free calcium rise triggers nuclear envelop breakdown in the sea urchin embryo. Nature 332:364–366.

    Google Scholar 

  4. Santella, L. and Carafoli, E. 1997. Calcium signaling in cell nucleus. FASEB J. 11:1091–1109.

    Google Scholar 

  5. Al-Mohanna, F. A., Caddy, K. W. T., and Boisover, S. R. 1994. The nucleus is insulated from large cytosolic calcium ion changes. Nature 367:745–750.

    Google Scholar 

  6. Yamaguchi, M. and Oishi, K. 1993. Characterization of Ca2+-stimulated ATPase and Ca2+ sequestering in rat liver nuclei. Molecular and Cellular Biochemistry 125:43–49.

    Google Scholar 

  7. Lanini, L., Bachs, O., and Carafoli, E. 1992. The calcium pump of the liver nuclear membrane is identical to that of endoplasmic reticulum. J. Biol. Chem. 267:11548–11552.

    Google Scholar 

  8. Nicotera, P., McKonkey, D. J., Jones, D. P., and Orrenius, S. 1989. ATP stimulates Ca2+ uptake and increases free calcium concentration in isolated rat liver nuclei. Proc. Natl. Acad. Sci. 86:453–457.

    Google Scholar 

  9. Humbert, J. P., Matter, N., Artulet, J-C, Koppler, P., and Malviya, A. N. 1996. Inositol 1,4,5-trisphosphate receptor is located on to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphatediscrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J. Biol. Chem. 271:478–485.

    Google Scholar 

  10. Oishi, K. and Yamaguchi, M. 1993. Effect of nicotinamide-adenine nucleotides on Ca2+ transport system in rat liver nuclei: Stimulation of Ca2+ release by NAD+. Mol. Cell Biochem. 121:127–133.

    Google Scholar 

  11. Giuffrida, A. M., Cox, D., and Mathias, A. P. 1975. RNA polymerase activity invarious classes of nuclei from different regions of rat brain during postnatal development. J. Neurochem. 24:749–755, 1975.

    Google Scholar 

  12. Chandrashekhar, R., Gandhi, C. R., and Ross, D. H. 1988. Characterization of a high affinity Mg2+-independent Ca2+-ATPase from rat brain synaptosomal membranes. J. Neurochem. 50:248–256.

    Google Scholar 

  13. Lamprechet, W., Stein, P., Heinz, F., and Weissner, H. 1974. Creatine phosphate. Pages 1777–1781, Vol 4, in Bergmeyer H. U. (ed), Methods of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  14. McDonald, H. M., Mulligan, J. C., Allen, A. C., and Taylor, P. M. 1980. Neonatal Asphyxia, I. Relationship of obstetric and neonatal complications to neonatal motality in 38,405 consecutive deliveries. J. Pediat. 96:898–902.

    Google Scholar 

  15. Volpe, J. J. 1987. Neurology of the Newborn, W. B. Saunders, Philadelphia, PA.

    Google Scholar 

  16. Mishra, O. P. and Delivoria-Papadopoulos, M. 1992. NMDA receptor modification of the fetal guinea pig brain during hypoxia. Neurochem. Res. 17:1211–1216.

    Google Scholar 

  17. Hoffman, D. J., DiGiacomo, J. E., Marro, P. J., Mishra, O. P., and Delivoria-Papadopoulos, M. 1994. Hypoxia-induced modification of the N-methyl-D-aspartate (NMDA) receptor in the brain of newborn piglets. Neurosci. Lett. 167:156–160.

    Google Scholar 

  18. Fritz, K. I., Groenendaal, F., McGowan, J. E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1996. Effects of 3-(2-carboxypiperzine-4-yl) propyl-1-phosphonic acid (CPP) on NMDA receptor binding characteristics and brain cell membrane function during cerebral hypoxia in newborn piglets. Brain Res. 729: 66–74, 1996.

    Google Scholar 

  19. Zanelli, S. A., Numagami, Y., McGowan, J. E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1999. NMDA receptor mediated calcium influx in cerebral cortical synaptosomes of the hypoxic guinea pig fetus. Neurochem. Res. 24:437–446.

    Google Scholar 

  20. Groennendaal, F., Mishra, O. P., McGowan, J. E., and Maria Delivoria-Papadopoulo, M. 1996. Cytosolic and membranebound cerebral nitric oxide synthase activity during hypoxia in cortical tissue of newborn piglets. Neurosci. Lett. 206:121–124.

    Google Scholar 

  21. Lipton, S. A., Choi, Y., Pan, Z., Lei, S. Z., Chen, H. V., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. 1993. A redox-based mechanism for neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.

    Google Scholar 

  22. Mishra, O. P., Zanelli, S. A., Ohnishi, S. T., and Delivoria-Papadopoulos, M. 2000. Hypoxia-induced generation of nitric oxide free radicals in cerebral cortex of newborn guinea pigs. Neurochem. Res. 25:1559–1565.

    Google Scholar 

  23. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman B. A. 1990. Apparent hydoxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and supperoxide. Proc. Natl. Acad. Sci. 87:1620–1624.

    Google Scholar 

  24. Ischiropoulos, H., Zhu, L., and Beckman, J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Bichem. Biophys. 298:446–451.

  25. Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J. C., Smith, C. D., and Beckman J. S. 1992. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298:431–437.

    Google Scholar 

  26. Yun, H. Y., Dawson, V. L., and Dawson, T. M. 1997. Nitric oxide in Health and disease of the nervous system. Mol. Psychiat. 2:300–310.

    Google Scholar 

  27. Beckman, J. S. 1994. Peroxynitrite verses hydroxyl radical: The role of nitric oxide in superoxide-dependent cerebral injury. Ann. NY. Acad. Sci. 738:69–75.

    Google Scholar 

  28. Schulz, J. B., Mathews, R. T., and Beal, M. F. 1995. Role of nitric oxide inneurodegenerative diseases. Neurol. 8:480–486.

    Google Scholar 

  29. Good, P. F., Hsu, A., Werner, P., Perl, D. P., and Warren, O. 1998. Protein nitrationin Parkinson's Disease. J. Neuropathol. Exptl. Neurol. 57:338–342.

    Google Scholar 

  30. Good, P. F., Werner, P., Hsu, A., Olanow C. W., and Perl, D. P. 1996. Evidence for neuronal oxidative damage in Alzheimer's disease. Am. J. Pathol. 149:21–28.

    Google Scholar 

  31. Szabo, C. 1996. Physiological and pathological roles of nitric oxide in the central nervous system. Brain Res. Bull. 41:131–141.

    Google Scholar 

  32. Beckman, J. S., Ye, Y. Z., Chen J., and Konger, K. A. 1996. The interactions of nitric oxide with oxygen radicals and scavengers in cerebral ischemic injury. Adv. Neurol. 71:339–354.

    Google Scholar 

  33. Cohen, J. J. and Duke, R. C. 1984. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol. 132:38–42.

    Google Scholar 

  34. Arends, M. J., Morris, R. G., and Wyllie, A. H. 1990. Apoptosis, the role of endonuclease. Am. J. Pathol. 136:539–608.

    Google Scholar 

  35. Ishida, R., Akiyoshi, H., and Takahashi, T. 1974. Isolation and purification of calcium and magnesium dependent endonuclease from rat liver nuclei. Biochem. Biophys. Res. Commun. 56:703–710.

    Google Scholar 

  36. Hameed, A., Olsen, K. J., Lee, M. K., Lichtenheld, M. G., and Podack, E. R. 1989. Cytolysis by Ca-permeable transmembrane channels: pore formation causes extensive DNA degradation and cell lysis. J. Exp. Med. 169:765–777.

    Google Scholar 

  37. Jones, D. P., McConkey, D. J., Nicoreta, P., and Orrenius, S. 1989. Calcium-activated DNA fragmentation in rat liver nuclei. J. Biol. Chem. 264:6398–6403.

    Google Scholar 

  38. Tominaga, T., Kagure, S., Narisawa, K., and Yoshimoto, T. 1993. Endonuclease activation following focal ischemic injury in the rat brain. Brain Res. 608:21–26.

    Google Scholar 

  39. Linnik, M. D., Zobrist, R. H., and Hatfield, M. D. 1993. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24:2002–2008.

    Google Scholar 

  40. Dragunow, M., Beilharz, E., Sirimanne, E., Lawlor, P., Williams, C., Bravo, R., and Gluckman, P. 1994. Immediateearly gene protein expression in neurons undergoing delayed death, but not necrosis, following hypoxic-ischemic injury to the young rat brain. Mol. Brain Res. 25:19–33.

    Google Scholar 

  41. Gillardon, F., Lenz, C., Waschke, K. F., Krajewski, S., Reed, J. C., Zimmermann, M., and Kuschinsky, W. 1996. Altered expression of Bcl-2, Bcl-X, Bax and c-Fos co localizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol. Brain Res. 40:254–260.

    Google Scholar 

  42. Ferrer, I., Tortosa, A., Macaya, A. Sierra, A., Moreno, D., Munell, F., Blanco, R., and Squier, W. 1994. Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Pathol. 4:115–122.

    Google Scholar 

  43. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y. 1995. Delayed neuronal death in the CA1 pyramidal layer of the gerbil hippocampus following transient ischemia in apoptosis. J. Neurosci. 15:1001–1011.

    Google Scholar 

  44. Honkaniemi, J., Massa, S. M., Breckinridge, M., and Sharp, F. R. 1996. Global ischemia induces apoptosis associated genes in hippocampus. Mol. Brain Res. 42:79–88.

    Google Scholar 

  45. Mehmet, H., Yue, X., Squier, M. V., Lorek, A., Cady, E., Penrice, J., Sarraf, C., Wylezinska, M., Kirkbride, V., Cooper, C., Brown, G. C., Wyatt, J. C., Reynolds R., and Edwards, A. D. 1994. Increased apoptosis in the cingulate sulcus of newborn piglet following transient hypoxia-ischemia is related to the degree of high energy phosphate depletion during the insult. Neurosci. Lett. 181:121–125.

    Google Scholar 

  46. Kitada, S., Krajewski, S., Miyashita, T., Krajewski, M., and Reed, J. C. 1996. Gamma-radiation induces upregulation of Bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 12:187–192.

    Google Scholar 

  47. Rosenbaum, D. M., Michaelson, M., Batter, D. K., Doshi, P., and Kessler, J. A. 1994. Evidence for hypoxia-inducedprogrammed cell death of cultured neurons. Ann. Neurol. 36:864–870.

    Google Scholar 

  48. Bossenmeyer, C., Chihab, R., Muller, S., Vert, P., and Daval, J-C. 1997. Differential expression of specific proteins associated with apoptosis (Bax) or cell survival (Bcl-2, HSP 70, HSP 105) after short-and long-term hypoxia in cultured cerebral neurons. Ped. Res. 41:41A.

    Google Scholar 

  49. Jensen, K. F., Ohmstede, C. A., Fisher, R. S., and Sahyoun, N. 1991. Nuclear and axonal localization of Ca2+/calmodulindependent protein kinase type Cr in rat cerebellar cortex. Proc. Natl. Acad. Sci. 88:2850–2853.

    Google Scholar 

  50. Bito, H., Deisseroth, K., and Tsien, R. W. 1996. CREB phosphorylation and dephosphorylation: a Ca2+ and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214.

    Google Scholar 

  51. Soderling, T. R. 1999. The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24:232–236.

    Google Scholar 

  52. Hardingham, G. E., Cruzalegui, F. H., Chawla S., and Bading, H. 1998. Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium. 23:131–134.

    Google Scholar 

  53. Matthews, R. P., Gutherie, C. R., Wailes, L. M., Zhao, X., Means, A. R., and McKnight, G. S. 1994. Calcium /calmodulindependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 4:6107–6116.

    Google Scholar 

  54. Gonzales, G. A. and Monminy, M. E. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine133. Cell 59:675–680.

    Google Scholar 

  55. Krajewski, S., Krajewski, M., Shabaik, A., Miyashita, T., Wang H. G., and Reed J. C. 1994. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am. J. Pathol. 145:1323–1336.

    Google Scholar 

  56. Merry, D. E., Veis, E. D. J., Hickey, W. F., and Korsmeyer, S. J. 1994. Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311.

    Google Scholar 

  57. Chinnaiyan, A. M., O'Rourke, K., Lane, B. R., and Dixit, V. M. 1997. Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death. Science 275:1122–1126.

    Google Scholar 

  58. Gillardon, F., Wickert, H., and Zimmermann, M. 1995. Upregulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci. Lett. 192:85–88.

    Google Scholar 

  59. Yin, X. M., Oltvai, Z. N., and Korsmeyer, S. J. 1994. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323.

    Google Scholar 

  60. Chen, J., Zhu, R. L., Nakayama, M., Kawaguchi, K., Jin, K., Stetler, R. A., Simon, R. P., and Graham, S. H. 1996. Expression of the apoptosis effector gene, bax, is up-regulated in vulnerable hippocampal Ca1 neurons following global ischemia. J. Neurochem. 67:64–71.

    Google Scholar 

  61. Chen, J., Graham, S. H., Nakayama, M., Zhu, R. L., Jin, K., Stetler, R. A., and Simon, R. P. Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J. Cereb. Blood Flow Metab. 17:2–10.

  62. Chen, J., Graham, S. H., Chan, P. H., Lan, J. Q., Zhou, G. J., and Simon R. P. 1995. bcl-2 is expressed in neurons that survive focal ischemia in rat. Neuroreport 6:394–398.

    Google Scholar 

  63. Ravishankar S., Ashraf, Q. M., Fritz, K., Mishra, O. P., and Delivoria-Papadopoulos, M. 2001. Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res. 901:23–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, O.P., Delivoria-Papadopoulos, M. Effect of Graded Hypoxia on High-Affinity Ca2+-ATPase Activity in Cortical Neuronal Nuclei of Newborn Piglets. Neurochem Res 26, 1335–1341 (2001). https://doi.org/10.1023/A:1014205702905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014205702905

Navigation