Skip to main content
Log in

Viscoelastic crack growth process in wood timbers: An approach by the finite element method for mode I fracture

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper the effects of viscoelastic characteristics in wood timbers, on the creep crack growth process are studied through a new finite element approach in the time domain. In order to take into account the linear viscoelastic orthotropic behavior, we present an incremental formulation based on a rheological representation of creep tensor components. By using a relationship between stress and crack opening intensity factors, the general approach of path independent integrals is extended in order to calculate energy release rate and local fracture characteristics. Afterwards, fracture parameters are computed through a coupling process with the incremental viscoelastic behavior. The numerical algorithm is presented and validated through numerical as well as experimental examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D'Almeida, A.G. (1984). Durée de vie en fissuration d'un matériau viscoélastique linéaire orthotrope: le bois. Doctoral thesis, University of Bordeaux I.

  • Attigui, M. and Petit, C. (1997). Mixed-mode separation in dynamic fracture mechanics: New path independent integrals. International Journal of Fracture 84, 19–36.

    Google Scholar 

  • Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7, 55–129.

    Google Scholar 

  • Betten, J. (1981). Creep theory of anisotropic solids. Journal of Rheology 25 565–581.

    Google Scholar 

  • Blackburn, W.S. (1972). Path independent integrals to predict onset of crack instability in an elastic plastic material. International Journal of Fracture Mechanics 8, 343–346.

    Google Scholar 

  • Bonfield, P.W., Mundy, J., Robson, D.J. and Dinwoodie, J.M. (1996). The modelling of time-dependant deformation in wood using chemical kinetics. Wood Science and Technology 30, 105–115.

    Google Scholar 

  • Bradley, W. (1998). Viscoelastic creep crack growth: a review of fracture mechanical analyses. Mechanics of Time Dependent Materials 1, 241–268.

    Google Scholar 

  • Brincker, R. (1992). Crack tip parameters for growing crack in linear viscoelastic materials. Proceeding 1st International Conference on Localized Damage, Springer–Verlag, Berlin, pp. 85–98.

    Google Scholar 

  • Brust, F.W. and Maijumidar, B.S. (1994). Load history effects on creep crack growth. Eng. Fract. Mech. 49, 809–836.

    Google Scholar 

  • Bui, H.D. (1978). Théories de la rupture fragile. Masson editions, Paris.

    Google Scholar 

  • Chrestensen, R.M. (1982). Theory of Viscoelasticity: an Introduction. Academic Press, New York.

    Google Scholar 

  • Destuynder, P. (1983). Quelques remarques sur la mécanique de la rupture élastique. Journal de mécanique théorique et appliquée 2, 113–135.

    Google Scholar 

  • Destuynder, P. and Djaoua, M. (1981). Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile. Mathematical Methods in the Applied Science 3 70–87.

    Google Scholar 

  • Dubois, F., Petit, C. and Ghazlan, G. (1996a). Numerical approach in viscoelastic fracture mechanics. Proceedings ECF 11, Mechanisms and Mechanics of Damage and Failure 1, 473–478.

    Google Scholar 

  • Dubois, F., Petit, C., Ghazlan, G. and Nouailles, A. (1996b). Propagation de fissures dans le bois sous charges permanentes: Expérimentation et modélisation. 4ème Colloque des Sciences et Industries du bois, pp. 453–460.

  • Dubois, F., Chazal, C. and Petit, C. (1997a). A Computational Investigation of Crack Growth Initiation in Linear Viscoelastic Material, 5th ICB/MFF Cracow '97, Vol. 2, pp. 403–416.

    Google Scholar 

  • Dubois, F., Chazal, C. and Petit, C. (1997b). Modélisation de la rupture différée dans les matériaux en bois. Revue Française de Génie 1, 713–742.

    Google Scholar 

  • Dubois, F., Chazal, C. and Petit, C. (1998). An Experimental Strategy Concerning the Crack Growth Phenomena Caused by Viscoelastic Effects in North Spruce, 12th Engineering Mechanics Conference, May 17–20, ASCE, San Diego.

    Google Scholar 

  • Ghazlan, G., Petit, C. and Caperaa, S. (1994). A computational method for the analysis of viscoelastic structures containing effects. 2nd International Conference on Localized Damage, Springer-Verlag, Berlin, pp. 383–390.

    Google Scholar 

  • Ghazlan, G., Caperaa, S. and Petit, C. (1995a). An incremental formulation for the linear analysis of thin viscoelastic structures using generalized variables. International Journal of Numerical Methods of Engineers 38, 3315–3333.

    Google Scholar 

  • Ghazlan, G., Dubois, F. and Caperaa, S. (1995b). A computational method for the linear analysis of layered viscoelastic structures using generalized variables. 1st International Conference on Mechanics of Time Dependent Materials, Ljubljana, pp. 270–275.

  • Guyon, G. (1987). Prévisions de la rupture différée du pin maritime en flexion. Doctoral thesis, University of Bordeaux I.

  • Kishimoto, K., Aoki, S. and Sakata, M. (1980). On the path independent integral-J. Engineering Fracture Mechanics 13, 841–850.

    Google Scholar 

  • Knauss, W.G. (1970). Delayed failure: the Griffith problem for linearly viscoelastic materials. International Journal of Fracture 6, 7–20.

    Google Scholar 

  • Larricq, P. (1992). Une méthode d'estimation des caractéristiques de rupture différée d'un matériau viscoélastique orthotrope: application au bois. Doctoral thesis, University of Bordeaux I.

  • Lu, P. and Leicester, R.H. (1997). Mechano-sorptive effects on timber creep. Wood Science and Technology 31, 331–337.

    Google Scholar 

  • Mohager, S. and Toratti, T. (1993). Long term bending creep of wood in cyclic relative humidity. Wood Science and Technology 27, 49–59.

    Google Scholar 

  • Nielsen, L.F. (1982). A lifetime analysis of cracked linear-viscoelastic materials with special reference to wood. Proc. IUFRO S5.02, Sweden.

  • Nielsen, L.F (1985). Wood as a Cracked Viscoelastic Material. Technical Repport 153/85, The Technical University of Denmark, Department of Civil Engineering, Building Materials Laboratory.

  • Pierce, C.B. and Dinwoodie, J.M. (1985). Creep in chipboard. Part 5: An improved model for prediction of creep deflection. Wood Science and Technology 19, 83–91.

    Google Scholar 

  • Petit, C. (1994). Généralisation et application des lois de mécanique de la rupture à létude de structures et matériaux fissurés, H.D.R., Universitity of Limoges.

  • Salençon, J. (1983). Viscoélasticité. Presses de l' école nationale des Ponts et Chaussées.

  • Schapery, R.A. (1975a). A theory of crack initiation and growth in viscoelastic media I. Theoretical development. International Journal of Fracture 11, 141–159.

    Google Scholar 

  • Schapery, R.A. (1975b). A theory of crack initiation and growth in viscoelastic media II Approximate methods of analysis. International Journal of Fracture 11, 369–388.

    Google Scholar 

  • Schapery, R.A. (1984). Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. International Journal of Fracture 25, 195–223.

    Google Scholar 

  • Schniewind, A.P. and Barret, J.D. (1972). Wood as a linear orthotropic viscoelastic material. Wood Science and Technologie 6, 43–57.

    Google Scholar 

  • Sih, G.C. and Chen, E.P. (1981). Cracks in composite materials. Mechanical of Fracture, Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Valentin, G. and D'Almeida, A. (1984). Durée de vie en fissuration du Pin Maritime. Arbolor, Metz.

    Google Scholar 

  • Watanabe, K. (1985). The conservation law related to path independent integral and expression of crack energy density by path independent integral. Bull. JSME, 28.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, F., Chazal, C. & Petit, C. Viscoelastic crack growth process in wood timbers: An approach by the finite element method for mode I fracture. International Journal of Fracture 113, 367–388 (2002). https://doi.org/10.1023/A:1014203405764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014203405764

Navigation