Skip to main content
Log in

From the von Neumann Equation to the Quantum Boltzmann Equation II: Identifying the Born Series

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a previous paper [Ca1], the author studied a low density limit in the periodic von Neumann equation with potential, modified by a damping term. The model studied in [Ca1], considered in dimensions d≥3, is deterministic. It describes the quantum dynamics of an electron in a periodic box (actually on a torus) containing one obstacle, when the electron additionally interacts with, say, an external bath of photons. The periodicity condition may be replaced by a Dirichlet boundary condition as well. In the appropriate low density asymptotics, followed by the limit where the damping vanishes, the author proved in [Ca1] that the above system is described in the limit by a linear, space homogeneous, Boltzmann equation, with a cross-section given as an explicit power series expansion in the potential. The present paper continues the above study in that it identifies the cross-section previously obtained in [Ca1] as the usual Born series of quantum scattering theory, which is the physically expected result. Hence we establish that a von Neumann equation converges, in the appropriate low density scaling, towards a linear Boltzmann equation with cross-section given by the full Born series expansion: we do not restrict ourselves to a weak coupling limit, where only the first term of the Born series would be obtained (Fermi's Golden Rule).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Bohm, Quantum Mechanics, Texts and Monographs in Physics (Springer-Verlag, 1979).

  2. C. Boldrighini, L. A. Bunimovich, and Ya. Sinai, On the Boltzmann equation for the Lorentz gas, J. Stat. Phys. 32:47–501 (1983).

    Google Scholar 

  3. J. Bourgain, F. Golse, and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas, Comm. Math. Phys. 190:49–508 (1998).

    Google Scholar 

  4. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).

  5. D. Calecki, Lecture (University Paris 6, 1997).

  6. F. Castella, From the von Neumann equation to the quantum Boltzmann equation in a deterministic framework, to appear in J. Stat. Phys. (2001).

  7. F. Castella, Résultats de convergence et de non-convergence de l'équation de von Neumann périodique vers l'équation de Boltzmann quantique, Séminaire E.D.P. (Ecole Polytechnique, exposé N. XXI, 199–2000).

  8. F. Castella, On the derivation of a Quantum Boltzmann Equation from the periodic von Neumann equation, Mod. Math. An. Num. 33:32–349 (1999).

    Google Scholar 

  9. F. Castella and P. Degond, Convergence de l'équation de von Neumann vers l'équation de Boltzmann Quantique dans un cadre déterministe, C. R. Acad. Sci. Sér. I 329:23–236 (1999).

    Google Scholar 

  10. F. Castella and A. Plagne, A distribution result for slices of sums of squares, To appear in Math. Proc. Camb. Philos. Soc.

  11. F. Castella, A. Plagne, Non-derivation of the Quantum Boltzmann equation from the periodic Schrödinger equation, Preprint (2001).

  12. F. Castella, L. Erdös, F. Frommlet, and P. A. Markowich, Fokker-Planck equations as scaling limits of reversible quantum systems, J. Statist. Phys. 100:54–601 (2000).

    Google Scholar 

  13. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique Quantique, I et II, Enseignement des Sciences 16 (Hermann, 1973).

  14. M. Combescot, Is there a generalized Fermi Golden Rule (Preprint Université Paris VI, 1999).

  15. R. Dümcke, The low density limit for an N-level system interacting with a free Bose or Fermi gas, Comm. Math. Phys. 97:33–359 (1985).

    Google Scholar 

  16. L. Erdös and H. T. Yau, Linear boltzmann equation as scaling limit of quantum lorentz gas advances, in Differential Equations and Mathematical Physics (Atlanta, GA, 1997), pp. 13–155; Contemp. Math., Vol. 217 (Amer. Math. Soc., Providence, RI, 1998).

    Google Scholar 

  17. L. Erdös and H. T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math. 53:66–735 (2000).

    Google Scholar 

  18. M. V. Fischetti, Theory of electron transport in small semiconductor devices using the Pauli master equations, J. Appl. Phys. 83:27–291 (1998).

    Google Scholar 

  19. T. G. Ho, L. J. Landau, and A. J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys. 5:20–298 (1993).

    Google Scholar 

  20. L. Hörmander, The Analysis of Linear Partial Differential Operators (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  21. K. Huang, Statistical Mechanics (Wiley and Sons, 1963).

  22. J. B. Keller, G. Papanicolaou, and L. Ryzhik, Transport equations for elastic and other waves in random media, Wave Motion 24:32–370 (1996).

    Google Scholar 

  23. W. Kohn and J. M. Luttinger, Phys. Rev. 108:590 (1957).

    Google Scholar 

  24. W. Kohn and J. M. Luttinger, Phys. Rev. 109:1892 (1958).

    Google Scholar 

  25. H. J. Kreuzer, Nonequilibrium Thermodynamics and its Statistical Foundations (Oxford Science Publications, Monographs on Physics and Chemistry of Materials, 1983).

  26. R. Kubo, J. Phys. Soc. Jap. 12 (1958).

  27. L. J. Landau, Observation of Quantum Particles on a Large Space-Time Scale, J. Stat. Phys. 77:25–309 (1994).

    Google Scholar 

  28. G. Lindblad, On the generators of Quantum dynamical semigroups, Comm. Math. Phys. 48:11–130 (1976).

    Google Scholar 

  29. R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1991).

    Google Scholar 

  30. P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer-Verlag, Vienna, 1990).

    Google Scholar 

  31. A. C. Newell and J. V. Moloney, Nonlinear Optics, Advanced Topics in the Interdisciplinary Mathematical Sciences (Addison-Wesley Publishing Company, 1992).

  32. F. Nier, Asymptotic Analysis of a scaled Wigner equation and Quantum Scattering, Transp. Theor. Stat. Phys. 24:59–629 (1995).

    Google Scholar 

  33. F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. Ec. Norm. Sup. Sér. 4 29:14–183 (1996).

    Google Scholar 

  34. W. Pauli, Festschrift zum 60. Geburtstage A. Sommerfelds (Hirzel, Leipzig, 1928), p. 30.

    Google Scholar 

  35. F. Poupaud and A. Vasseur, Classical and Quantum Transport in Random Media (Preprint, University of Nice, 2001).

  36. I. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience, New York, 1962).

    Google Scholar 

  37. M. Reed and B. Simon, Methods of Modern Mathematical Physics. III. Scattering theory (Academic Press, New York/London, 1979).

    Google Scholar 

  38. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1977).

  39. H. Spohn, Derivation of the transport equation for electrons moving through random impurities, J. Stat. Phys. 17:38–412 (1977).

    Google Scholar 

  40. L. Van Hove, Physica 21:517 (1955).

    Google Scholar 

  41. L. Van Hove, Physica 23:441 (1957).

    Google Scholar 

  42. L. Van Hove, in Fundamental Problems in Statistical Mechanics, E. G. D. Cohen, ed. (1962), p. 157.

  43. N. G. Van Kampen, Stochastic processes in physics and chemistry, Lecture Notes in Mathematics, Vol. 888 (North-Holland, 1981).

  44. R. Zwanzig, Quantum Statistical Mechanics, P. H. E. Meijer, ed. (Gordon and Breach, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castella, F. From the von Neumann Equation to the Quantum Boltzmann Equation II: Identifying the Born Series. Journal of Statistical Physics 106, 1197–1220 (2002). https://doi.org/10.1023/A:1014098122698

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014098122698

Navigation