Skip to main content
Log in

The Kraichnan–Kazantsev Dynamo

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamo effect generated by an incompressible, helicity-free flow drawn from the Kraichnan statistical ensemble. The quantum formalism introduced by Kazantsev [A. P. Kazantsev, Sov. Phys. JETP 26, 1031–1034 (1968)] is shown to yield the growth rate and the spatial structure of the magnetic field. Their dependences on the magnetic Reynolds number and the Prandtl number are analyzed. The growth rate is found to be controlled by the largest between the diffusive and the viscous characteristic times. The same holds for the magnetic field correlation length and the corresponding spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  2. E. N. Parker, Cosmical Magnetic Fields (Clarendon Press, Oxford, 1979).

    Google Scholar 

  3. R. H. Kraichnan, Small-scale structure of a scalar field convected by turbulence, Phys. Fluids 11:94–953 (1968).

    Google Scholar 

  4. A. P. Kazantsev, Enhancement of a magnetic field by a conducting fluid, Sov. Phys. JETP 26:103–1034 (1968).

    Google Scholar 

  5. F. Krause and K.-H. Rädler, Mean-field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Frankfurt, 1980).

    Google Scholar 

  6. S. Boldyrev, A Solvable Model for Nonlinear Mean Field Dynamo, astro-ph/0105354 (2001).

  7. A. A. Ruzma?kin and D. D. Sokolov, The magnetic field in mirror-invariant turbulence, Sov. Astron. Lett. 7:38–390 (1981).

    Google Scholar 

  8. V. G. Novikov, A. A. Ruzma?kin, and D. D. Sokolov, Kinematic dynamo in a reflectioninvariant random field, Sov. Phys. JETP 58:52–532 (1983).

    Google Scholar 

  9. A. Gruzinov, S. Cowley, and R. Sudan, Small-scale-field dynamo, Phys. Rev. Lett. 77:434–4344 (1996).

    Google Scholar 

  10. M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassola, Small-scale turbulent dynamo, Phys. Rev. Lett. 83:406–4068 (1999).

    Google Scholar 

  11. A. A. Schekochihin, S. A. Boldyrev, and R. M. Kulsrud, Spectra and Growth Rates of Fluctuating Magnetic Fields in the Kinematic Dynamo Theory with Large Magnetic Prandtl Numbers, astro-ph/0103333 (2001); submitted to Astrophys. J. (2001).

  12. M. Vergassola, Anomalous scaling for passively advected magnetic fields, Phys. Rev. E 53:R302–R3024 (1996).

    Google Scholar 

  13. N. V. Antonov, A. Lanotte, and A. Mazzino, Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence, Phys. Rev. E 61:658–6605 (2000).

    Google Scholar 

  14. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 2, J. Lumley, ed. (MIT Press, Cambridge, MA, 1975).

    Google Scholar 

  15. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., United States of America, 1953).

    Google Scholar 

  16. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincenzi, D. The Kraichnan–Kazantsev Dynamo. Journal of Statistical Physics 106, 1073–1091 (2002). https://doi.org/10.1023/A:1014089820881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014089820881

Navigation