Skip to main content
Log in

Small-Scale Analysis of Hydrodynamical Helicity Suppression in the Mean-Field Dynamo-Model

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We compare the classical mean-field dynamo model proposed by Steenbeck, Krause, and Rädler to describe the generation of large-scale magnetic fields and the Kazantsev model that describes the small-scale dynamo in an unbounded homogeneous and isotropic flow. We consider the subcritical regime of small magnetic Reynolds numbers whereby there is no rapid generation. The same regime can also be understood as a process in which the small-scale generation is stopped due to its intrinsic mechanisms. Within both approaches we examine what distinguishes the spectra of the linear and nonlinear processes under the suppression of hydrodynamic (kinetic) helicity or, in other words, compare the alpha-quenchings. We check whether averaging the induction equation over scales larger than the velocity field correlation length leads to the loss of any features in the spectrum near the dissipative scale. We study the various types of dynamo stabilization using which seems more justified physically than the standard alpha-quenching, but more difficult within large-scale models containing limited information about the random velocity field. In particular, we compare the integral suppression whereby the total energy is conserved and the spectral suppression that suggests the conservation of energy and helicity in each spectral shell without assuming their redistribution over the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. D. Sokoloff, R. A. Stepanov, and P. G. Frick, Phys. Usp. 57, 292 (2014).

    Article  ADS  Google Scholar 

  2. A. Ruzmaikin, D. Sokoloff, and A. Shukurov, Mon. Not. R. Astron. Soc. 241, 1 (1989).

    Article  ADS  Google Scholar 

  3. K. Subramanian, Mon. Not. R. Astron. Soc. 294, 718 (1998).

    Article  ADS  Google Scholar 

  4. Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).

    Google Scholar 

  5. F. Krause and K.-H. Räadler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Oxford, 1980).

    Google Scholar 

  6. S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov, Sov. Phys. Usp. 28, 307 (1985).

    Article  ADS  Google Scholar 

  7. A. P. Kazantsev, Sov. Phys. JETP 26, 1031 (1967).

    ADS  Google Scholar 

  8. R. Kraichnan and S. Nagarajan, Phys. Fluids 10, 853 (1967).

    ADS  Google Scholar 

  9. S. Vainshtein and L. Kichatinov, J. Fluid Mech. 168, 73 (1986).

    Article  ADS  Google Scholar 

  10. F. Cattaneo and S. I. Vainshtein, Astrophys. J. 376, L21 (1991).

    Article  ADS  Google Scholar 

  11. A. V. Gruzinov and P. H. Diamond, Phys. Rev. Lett. 72, 1651 (1994).

    Article  ADS  Google Scholar 

  12. A. Bhattacharjee and Y. Yuan, Astrophys. J. 449, 739 (1995).

    Article  ADS  Google Scholar 

  13. A. Brandenburg and K. J. Donner, Mon. Not. R. Astron. Soc. 288, L29 (1997).

    Article  ADS  Google Scholar 

  14. D. Sokoloff, A. Shukurov, and A. Ruzmaikin, Geophys. Astrophys. Fluid Dyn. 25, 293 (1983).

    Article  ADS  Google Scholar 

  15. O. Artamonova and D. Sokolov, Vestn. MGU 27, 8 (1986).

    Google Scholar 

  16. D. Sokoloff, E. Yushkov, and A. Lukin, Geomagn. Aeron. 57, 844 (2017).

    Article  ADS  Google Scholar 

  17. V. G. Novikov, A. A. Ruzmaikin, and D. D. Sokolov, Sov. Phys. JETP 58, 527 (1983).

    Google Scholar 

  18. E. Yushkov, Geomagn. Aeron. 109, 450 (2015).

    Google Scholar 

  19. E. Yushkov, A. Lukin, D. Sokoloff, and P. Frick, Geomagn. Aeron. 113, 184 (2018).

    Google Scholar 

  20. E. V. Yushkov, A. S. Lukin, and D. D. Sokoloff, J. Exp. Theor. Phys. 128, 952 (2019).

    Article  ADS  Google Scholar 

  21. D. Sokoloff and N. Yokoi, J. Plasma Phys. 84, 7 (2018).

    Article  Google Scholar 

  22. A. Brandenburg, S. H. Saar, and C. R. Turpin, Astrophys. J. Lett. 498, 51 (1998).

    Article  ADS  Google Scholar 

  23. E. V. Yushkov and D. D. Sokoloff, Izv., Phys. Sol. Earth 54, 652 (2018).

    Article  Google Scholar 

  24. F. Plunian, R. Stepanov, and P. Frick, Phys. Rep. 523, 1 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Beck, A. Brandenburg, D. Moss, A. Shukurov, and D. Sokoloff, Ann. Rev. Astron. Astrophys. 34, 155 (1996).

    Article  ADS  Google Scholar 

  26. D. Sokoloff, A. Khlystova, and V. Abramenko, Mon. Not. R. Astron. Soc. 451, 6040 (2015).

    Article  Google Scholar 

  27. Ya. B. Zel’dovich, S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov, Sov. Phys. Usp. 30, 353 (1987).

    Article  ADS  Google Scholar 

Download references

Funding

The work of D.D.S. and A.S.L. on the formulation of the problem and the search for methods of its solution was supported by the Russian Foundation for Basic Research (project no. 18-02-00085). The numerical experiment carried out by E.V.Y. and the interpretation of results by all authors were supported by the BAZIS Foundation (project no. 18-1-1-77-3)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Yushkov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkov, E.V., Lukin, A.S. & Sokoloff, D.D. Small-Scale Analysis of Hydrodynamical Helicity Suppression in the Mean-Field Dynamo-Model. J. Exp. Theor. Phys. 130, 935–944 (2020). https://doi.org/10.1134/S1063776120050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120050118

Navigation