Skip to main content
Log in

Existence and Nonlinear Stability of Stationary States of the Schrödinger–Poisson System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the Schrödinger–Poisson system in the repulsive (plasma physics) Coulomb case. Given a stationary state from a certain class we prove its nonlinear stability, using an appropriately defined energy-Casimir functional as Lyapunov function. To obtain such states we start with a given Casimir functional and construct a new functional which is in some sense dual to the corresponding energy-Casimir functional. This dual functional has a unique maximizer which is a stationary state of the Schrödinger–Poisson system and lies in the stability class. The stationary states are parameterized by the equation of state, giving the occupation probabilities of the quantum states as a strictly decreasing function of their energy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Angelescu, M. Pulvirenti, and A. Teta, Derivation and classical limit of the mean-field equation for a quantum Coulomb system: Maxwell-Boltzmann statistics, J. Statist. Phys. 74:14–165 (1994).

    Google Scholar 

  2. V. I. Arnol'd, Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid, Sov. Math. Dokl. 6:77–776 (1965).

    Google Scholar 

  3. V. I. Arnol'd, On an a priori estimate in the theory of hydrodynamical stability, Amer. Math. Soc. Transl., Series 2 79:26–269 (1969).

    Google Scholar 

  4. C. Bardos, F. Golse, and N. J. Mauser, Weak coupling limit of the N-particle Schrödinger equation, preprint (2000).

  5. F. Brezzi and P. A. Markowich, The three-dimensional Wigner-Poisson problem: Existence, uniqueness and approximation, Math. Meth. Appl. Sci. 14:3–62 (1991).

    Google Scholar 

  6. H. G. B. Casimir, ber die Konstruktion einer zu den irreduziblen Darstellungen halbeinfacher kontinuierlicher Gruppen gehörigen Differentialgleichung, Proc. R. Soc. Amsterdam 34:84–846 (1931).

    Google Scholar 

  7. F. Castella, L 2-solutions to the Schrödinger-Poisson system: Existence, uniqueness, time behaviour, and smoothing effects, Math. Mod. Meth. Appl. Sci. 7:105–1083 (1997).

    Google Scholar 

  8. J. M. Chadam and R. T. Glassey, Global existence of solutions to the Cauchy problem for time dependent Hartree equations, J. Math. Phys. 16:112–1130 (1975).

    Google Scholar 

  9. P. Degond and F. Nier, Etude des solutions stationnaires de l'équation de Wigner, private communication.

  10. J. Dolbeault and P. A. Markowich, Unterreiter, A: On singular limits of mean-field equations, Arch. Rat. Mech. Anal., to appear.

  11. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, New York, 1976).

    Google Scholar 

  12. I. Gasser, R. Illner, P. A. Markowich, and C. Schmeiser, Semiclassical, t ? ? asymptotics and dispersive effects for the Hartree-Fock systems, Math. Mod. and Num. Anal. 32:69–713 (1998).

    Google Scholar 

  13. Y. Guo, Variational method in polytropic galaxies, Arch. Rational Mech. Anal. 150:20–224 (1999).

    Google Scholar 

  14. Y. Guo, On the generalized Antonov's stability criterion, Contem. Math. 263:8–107 (2000).

    Google Scholar 

  15. Y. Guo and G. Rein, Stable steady states in stellar dynamics, Arch. Rational Mech. Anal. 147:22–243 (1999).

    Google Scholar 

  16. Y. Guo and G. Rein, Existence and stability of Camm type steady states in galactic dynamics, Indiana University Math. J. 48:123–1255 (1999).

    Google Scholar 

  17. Y. Guo and G. Rein, Isotropic steady states in galactic dynamics, Commun. Math. Phys. 219:60–629 (2001).

    Google Scholar 

  18. D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep. 123:–116 (1985).

    Google Scholar 

  19. P. A. Markowich, Boltzmann distributed quantum steady states and their classical limit, Forum Math. 6:–33 (1994).

    Google Scholar 

  20. F. Nier, A stationary Schrödinger-Poisson system arising from the modelling of electronic devices, Forum Math. 2:48–510 (1990).

    Google Scholar 

  21. F. Nier, A variational formulation of Schrödinger-Poisson systems in dimension d3, Commun. Partial Differential Equations 18:112–1147 (1993).

    Google Scholar 

  22. F. Nier, Schrödinger-Poisson systems in dimension d3: the whole-space case, Proc. Roy. Soc. Edinburgh Sect. A 123:117–1201 (1993).

    Google Scholar 

  23. G. Rein, Nonlinear stability for the Vlasov-Poisson system-the energy-Casimir method, Math. Meth. Appl. Sci. 17:112–1140 (1994).

    Google Scholar 

  24. G. Rein, Flat steady states in stellar dynamics-existence and stability, Commun. Math. Phys. 205:22–247 (1999).

    Google Scholar 

  25. H. Spohn, Quantum kinetic equations, in On the Three Levels, M. Fannes et al., eds. (Plenum Press, New York, 1994), pp. –10

    Google Scholar 

  26. G. Wolansky, On nonlinear stability of polytropic galaxies, Ann. Inst. Henri Poincaré 16:1–48 (1999).

    Google Scholar 

  27. G. Wolansky, Static solutions of the Vlasov-Einstein system, preprint (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markowich, P.A., Rein, G. & Wolansky, G. Existence and Nonlinear Stability of Stationary States of the Schrödinger–Poisson System. Journal of Statistical Physics 106, 1221–1239 (2002). https://doi.org/10.1023/A:1014050206769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014050206769

Navigation