Skip to main content
Log in

Berezinskii–Kosterlitz–Thouless Order in Two-Dimensional O(2)-Ferrofluid

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a two-dimensional ferrofluid of hard-core particles with internal degrees of freedom (plane rotators) and O(2)-invariant ferromagnetic spin interaction. By reducing the continuous system to an approximating reference lattice system, a lower bound for the two-spin correlation function is obtained. This bound, together with the Fröhlich–Spencer result about the Berezinskii–Kosterlitz–Thouless transition in the two-dimension lattice system of plane rotators, shows that our model also exhibits the same kind of ordering. Namely for a short-range ferromagnetic interaction the two-spin correlation function does not decay faster than some power of the inverse distance between particles, for small temperatures and high densities of the ferrofluid. For a long-range ferromagnetic interaction the model manifests a non-zero order parameter (magnetization) in this domain, whereas for high temperatures spin correlations decay exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Romano and V. A. Zagrebnov, Orientational ordering transition in a continuous-spin ferrofluid, Physica A 253:48–497 (1998).

    Google Scholar 

  2. H.-O. Georgii and V. A. Zagrebnov, On the interplay of magnetic and molecular forces in Curie-Weiss ferrofluid models, J. Statist. Phys. 93:7–107 (1998).

    Google Scholar 

  3. H.-O. Georgii, O. Häggström, and C. Maes, The random geometry of equilibrium phases, in Phase Transitions and Critical Phenomena, Vol. 18, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 2000).

    Google Scholar 

  4. C. Gruber and R. B. Griffiths, Phase transition in a ferromagnetic fluid, Physica A 138:22–230 (1986).

    Google Scholar 

  5. B. Widom and J. S. Rowlinson, New model for the study of liquid-vapor phase transition, J. Chem. Phys. 52:167–1684 (1970).

    Google Scholar 

  6. D. Ruelle, Existence of a phase transition in a continuous classical system, Phys. Rev. Lett. 27:104–1041 (1971).

    Google Scholar 

  7. J. L. Lebowitz and E. H. Lieb, Phase transition in a continuum classical system with finite interactions, Phys. Lett. 39A:9–100 (1972).

    Google Scholar 

  8. J. Bricmont, K. Kuroda, and J. L. Lebowitz, The structure of Gibbs states and coexistence for non-symmetric continuum Widom-Rowlinson models, Z. Wahrscheinlichkeitstheorie Verw. Geb. 67:12–138 (1984).

    Google Scholar 

  9. D. Wells, Ph.D. thesis (Indiana University, 1977).

  10. J. Bricmont, J. L. Lebowitz, and Ch.-E. Pfister, Periodic Gibbs states of ferromagnetic spin systems, J. Statist. Phys. 24:26–277 (1981).

    Google Scholar 

  11. Ch.-E. Pfister, On the symmetry of the Gibbs states in two-dimensional lattice systems, Commun. Math. Phys. 79: 18–188 (1981).

    Google Scholar 

  12. S. B. Shlosman, Continuous models with continuous symmetries in two dimensions, in Random Fields, Vol. 2, J. Fritz, J. L. Lebowitz, and D. Szasz, eds. (North-Holland, Amsterdam, 1979), p. 949.

    Google Scholar 

  13. H.-O. Georgii, Gibbs Measures and Phase Transitions (de Gruyter, Berlin/New York, 1988).

    Google Scholar 

  14. J. Fröhlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional abelian systems and the Coulomb gas, Commun. Math. Phys. 81:52–602 (1981).

    Google Scholar 

  15. V. L. Berezinski?, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems, Soviet Phys. ETP 32:49–500 (1971).

    Google Scholar 

  16. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in twodimensional systems, J. Phys. C 6:118–1203 (1973).

    Google Scholar 

  17. M. Campbell and L. Chayes, Intermediate phases in mixed nematic/Heisenberg spin models, J. Phys. A 32:888–8887 (1999).

    Google Scholar 

  18. L. Chayes, S. B. Shlosman, and V. A. Zagrebnov, Discontinuity of the magnetization in diluted O(n)-models, J. Statist. Phys. 98:53–549 (2000).

    Google Scholar 

  19. H.-O. Georgii and V. A. Zagrebnov, Entropy-driven phase transitions in multitype lattice gas models, J. Statist. Phys. 102:3–67 (1998).

    Google Scholar 

  20. V.A. Zagrebnov, Long-range order in a lattice-gas model of nematic liquid cristals, Physica A 232:73–746 (1996).

    Google Scholar 

  21. J. L. Lebowitz, A. E. Mazel, and E. Presutti, Liquid-vapor phase transition for systems with finite range interactions, J. Statist. Phys. 94:95–1025 (1999).

    Google Scholar 

  22. J. Ginibre, General formulation of Griffiths' inequalities, Commun. Math. Phys. 16:31–328 (1970).

    Google Scholar 

  23. J. L. Lebowitz, GHS and other inequalities, Commun. Math. Phys. 35:8–92 (1974).

    Google Scholar 

  24. C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets, Commun. Math. Phys. 22:8–103 (1971).

    Google Scholar 

  25. J. Fröhlich, The pure phases (harmonic functions) of generalized processes or: Mathematical physics of phase transitions and symmetry breaking, Bull. Amer. Math. Soc. 84:16–193 (1978).

    Google Scholar 

  26. J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity I, Commun. Math. Phys. 62:–34 (1978).

    Google Scholar 

  27. J. Bricmont, J. L. Lebowitz, and Ch.-E. Pfister, Some inequalities for anisotropic rotators, in The Wonderful World of Stochastics. A Tribute to Elliott W. Montroll, M. F. Shlesinger and G. H. Weiss, eds. (Elsevier Science Publishers B.V., Amsterdam, 1985), pp. 20–213.

    Google Scholar 

  28. F. Dunlop, Correlation inequalities and Kosterlitz-Thouless transition for anisotropic rotators, J. Statist. Phys. 41:73–743 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, C., Tamura, H. & Zagrebnov, V.A. Berezinskii–Kosterlitz–Thouless Order in Two-Dimensional O(2)-Ferrofluid. Journal of Statistical Physics 106, 875–893 (2002). https://doi.org/10.1023/A:1014021400408

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014021400408

Navigation