Skip to main content
Log in

Mechanical Activation of Diopside in CO2

  • Published:
Inorganic Materials Aims and scope

Abstract

The mechanical activation (MA) of diopside in a controlled CO2 atmosphere was studied using different grinding facilities. The results demonstrate that diopside may sorb CO2 by two mechanisms, depending on the nature of the MA process. If grinding is not accompanied by structure breakdown, the sorption process is similar to that reported for metal oxides, and the adsorbate consists of undistorted CO3 2- groups. If the MA process leads to diopside amorphization, CO2 is sorbed in the form of distorted carbonate groups, and the IR spectrum contains a split absorption band (1433 and 1522 cm–1) similar to the CO3 2- band in the spectra of carbonate-containing silicate glasses. After ball milling in an AL-1000 mechanical activator in CO2 for 580 min, diopside contains up to 15 wt % CO2 . Subsequent heating ensures partial or complete removal of the carbonate. Acid treatment of diopside after MA in CO2 leads to decomposition of the carbonate and almost complete leaching of the Ca and Mg cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

    Google Scholar 

  2. Boldyrev, V.V., Eksperimental'nye metody v mekhanokhimii tverdykh neorganicheskikh veshchestv (Experimental Methods in the Mechanochemistry of Inorganic Substances), Novosibirsk: Nauka, 1983.

    Google Scholar 

  3. Heinicke, G., Tribochemistry, Munich: Carl Hanser, 1984.

    Google Scholar 

  4. Khodakov, G.S., Sorption Mechanochemistry of Solid Inorganic Materials, Kolloidn. Zh., 1994, vol. 56, no. 1, pp. 113-128.

    Google Scholar 

  5. Bystrikov, A.V., Berestetskaya, I.V., Streletskii, A.N., and Butyagin, P.Yu., Mechanochemistry of the Quartz Surface: I. Products of Reaction with Hydrogen, Kinet. Katal., 1980, vol. 21, no. 3, pp. 765-769.

    Google Scholar 

  6. Streletskii, A.N. and Butyagin, P.Yu., Mechanochemistry of the Quartz Surface: II. Role of Friction, Kinet. Katal., 1980, vol. 21, no. 3, pp. 770-775.

    Google Scholar 

  7. Bystrikov, A.V., Streletskii, A.N., and Butyagin, P.Yu., Mechanochemistry of the Quartz Surface: III. Active Centers in Reaction with Hydrogen, Kinet. Katal., 1980, vol. 21, no. 4, pp. 1013-1018.

    Google Scholar 

  8. Berestetskaya, I.V., Bystrikov, A.V., Streletskii, A.N., and Butyagin, P.Yu., Mechanochemistry of the Quartz Surface: IV. Reaction with Oxygen, Kinet. Katal., 1980, vol. 21, no. 4, pp. 1019-1022.

    Google Scholar 

  9. Bystrikov, A.V., Streletskii, A.N., and Butyagin, P.Yu., Mechanochemistry of the Quartz Surface: V. Oxidation of Carbon Monoxide, Kinet. Katal., 1980, vol. 21, no. 5, pp. 1148-1153.

    Google Scholar 

  10. Kolbanev, I.V., Berestetskaya, I.V., and Butyagin, P.Yu., Mechanochemistry of the Quartz Surface: VI. Properties of the Peroxide Species ?SiÐOÐSi?, Kinet. Katal., 1980, vol. 21, no. 5, pp. 1154-1158.

    Google Scholar 

  11. Ikorskii, S.V. and Evetskaya, E.A., On CO2 Sorption during Gas Elimination from Rocks and Minerals in Vacuum Mills, Geokhimiya, 1975, no. 11, pp. 1712-1719.

    Google Scholar 

  12. Barker, C. and Torkelson, B.E., Gas Adsorption on Crushed Quartz and Basalt, Geochim. Cosmochim. Acta, 1975, vol. 39, no. 2, pp. 212-218.

    Google Scholar 

  13. Kalinkina, E.V., K alinkin, A.M., Forsling, W., and Makarov, V.N., Sorption of Atmospheric Carbon Dioxide and Structural Changes of Ca and Mg Silicate Minerals during Grinding: I. Diopside, Int. J. Miner. Process., 2001, vol. 61, no. 4, pp. 273-288.

    Google Scholar 

  14. Kalinkina, E.V., Kalinkin, A.M., Forsling, W., and Makarov, V.N., Sorption of Atmospheric Carbon Dioxide and Structural Changes of Ca and Mg Silicate Minerals during Grinding: II. Enstatite, Akermanite, and Wollastonite, Int. J. Miner. Process., 2001, vol. 61, no. 4, pp. 289-299.

    Google Scholar 

  15. Rutstein, M.S. and White, W.B., Vibrational Spectra of High-Calcium Pyroxenes and Pyroxenoids, Am. Mineral., 1971, vol. 56, no. 5/6, pp. 877-887.

    Google Scholar 

  16. Fine, G. and Stolper, E., Dissolved Carbon Dioxide in Basaltic Glasses: Concentrations and Speciation, Earth Planet. Sci. Lett., 1985/86, vol. 76, no. 3/4, pp. 263-278.

    Google Scholar 

  17. Sato, M. and Matsuda, S., Structure of Vaterite and Infrared Spectra, Z. Kristallogr., 1969, vol. 129, pp. 405-410.

    Google Scholar 

  18. Little, L.H., Infrared Spectra of Adsorbed Molecules, London: Academic, 1966. Translated under the title Infrakrasnye spektry adsorbirovannykh molekul, Moscow: Mir, 1969.

    Google Scholar 

  19. Butyagin, P.Yu. and Berestetskaya, I.V., Gas Adsorption on the Friction Surface of MgO, Kinet. Katal., 1983, vol. 24, no. 2, pp. 436-440.

    Google Scholar 

  20. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.Translated under the title IK-spektry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii, Moscow: Mir, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinkin, A.M., Politov, A.A., Boldyrev, V.V. et al. Mechanical Activation of Diopside in CO2. Inorganic Materials 38, 163–167 (2002). https://doi.org/10.1023/A:1014021312359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014021312359

Keywords

Navigation