Skip to main content
Log in

Convergent Flows of Molten Polymers Modeled by Generalized Second-Grade Fluids of Power-Law Type

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The molding processes of polymer melts involve geometrically complex dies. Such dies are usually tapered or streamlined to achieve a maximum output rate under conditions of laminar flow. The model of a generalized second-grade fluid of power-law type is used and the results obtained are illustrated by examples of convergent flows in conical and wedge-shaped dies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Avenas, J. F. Agassant, and J. Ph. Sergent, La Mise en Forme des Matieres Plastiques, Tec-Doc. Lavoisier, Paris (1982).

    Google Scholar 

  2. D. M. Binding, “An approximate analysis for contraction and converging flows,” J. Non-Newt. Fluid Mech., 27, 173-189 (1988).

    Google Scholar 

  3. F. N. Cogswell, “Converging flow of polymer melts in extrusion dies,” Polym. Eng. Sci., 12, 64-73 (1972).

    Google Scholar 

  4. Z. P. Shulman, Convective Heat Transfer of Rheologically Complex Fluids [in Russian], Energy, Moscow (1975).

    Google Scholar 

  5. J. M. Eckmann, D. J. Wildman, and J. L. S. Chen, “Laminar flow studies of highly loaded suspensions in horizontal pipes,” Second Int. Symp. Slurry Flows, ASME FED, 38, 85-92 (1986).

    Google Scholar 

  6. E. Walicki and A. Walicka, “Basic flows of generalized second-grade fluids,” in: XIX Symp. on Rheology of RAS, 22-27 June. Coll. Abstracts, Klaipeda (1998), p. 78.

  7. R. S. Rivlin and J. L. Ericksen, “Stress-deformation relations for isotropic materials,” J. Rat. Mech. Anal., 4, 323-435 (1955).

    Google Scholar 

  8. F. N. Cogswell, “Converging flow and stretching flow: a compilation,” J. Non-Newt. Fluid Mech., 4, 23-28 (1978).

    Google Scholar 

  9. E. Walicki and A. Walicka, “An approximate analysis for conical flow of viscoplastic fluids,” Reports, Fizyka-Chemia, T.U. Zielona Góra, 6-7, 197-217 (1994).

    Google Scholar 

  10. E. Walicki and A. Walicka, “Pressure drops in the conical flow of a molten metal,” in: Solid. Metals Alloys, Proc. Conf. “Foundry “95” (1995), 24, pp. 147-154.

    Google Scholar 

  11. E. Walicki, A. Walicka, and D. Michalski, “Analysis of a molten metal flow in the conical die,” in: Proc. of VIII Nat. Conf.: Tendencies in Manufacturing Processes, 16-18 Sept., Zielona Góra (1997), pp. 175-180.

  12. E. Walicki, A. Walicka, and D. Michalski, “Pressure drops in the conical flow of a molten metal,” in: Proc. 5th European Rheology Conference, PortoroÞ (Slovenia), 6-11 Sept., PortoroÞ (1998), pp. 169-170.

  13. E. Walicki, A. Walicka, D. Michalski, and P. Ratajczak, “Approximate analysis for conical flow of generalized second-grade fluids,” Les Cahiers de Rhéol., 15, 309-316 (1998).

    Google Scholar 

  14. E. Walicki and A. Walicka, “Convergent flows of generalized second-grade fluids of power-law type,” in: XX Symposium on Rheology of RAS, Karacharovo (Russia), 22-27 May. Coll. Abstracts (2000), pp. 203-204.

  15. A. Walicka, “Flows of generalized second-grade fluids in rectilinear channels,” Appl. Mech. Eng., 4, No. 2, 375-395 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walicki, E., Walicka, A. Convergent Flows of Molten Polymers Modeled by Generalized Second-Grade Fluids of Power-Law Type. Mechanics of Composite Materials 38, 89–94 (2002). https://doi.org/10.1023/A:1014017125466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014017125466

Navigation