Skip to main content
Log in

Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic diversity was estimated among 42 U.S. PlantIntroduction (PI) accessions of the genusCitrullus (of these, 34 PIs are reported tohave disease resistance), and 5 watermelon cultivars, using 30RAPD primers. These primers produced 662 RAPD markers that could berated with high confidence. Based on these markers, geneticsimilarity coefficients were calculated and a dendrogram wasconstructed using the unweighted pair-group method witharithmetic average (UPGMA). The analysis delineated threemajor clusters. The first cluster consisted of a group of fivewatermelon cultivars, a group of C.lanatus var. lanatusaccessions, and a group of C.lanatus var. lanatusaccessions that contained some C.lanatus var. citroidesgenes. The second cluster consisted of the C.lanatus var. citroidesaccessions, while the third cluster consisted of theC. colocynthis accessions.The two C. lanatus clustersdifferentiated from each other and from the C.colocynthis cluster at the level of 58.8%and 38.9% genetic similarity, respectively. Assessment ofgenetic diversity among accessions that have been reported to havedisease resistance indicated that resistance to either anthracnose,downy mildew, powdery mildew, or watermelon mosaic virus is foundamong all major groups of Citrullus PIs.Additionally, resistance to gummy stem blight or Fusarium wilt mayexist among C. lanatus var.citroides PIs. This study demonstrates thatmolecular markers can be useful in assessing genetic diversity, andin sorting Citrullus PIs into phylogeneticgroups prior to their evaluation for disease or pestresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biles C.L., Martyn R.D. and Wilson H.D. 1989. Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience 24: 810–812.

    Google Scholar 

  • Boyhan G.E., Norton J.D., Abrahams B.R. and Wen N.H. 1994. A new source of resistance to anthracnose (Race 2) in watermelon. HortScience 29: 111–112.

    Google Scholar 

  • Burkill H.M. 1985. The Useful Plants of West Tropical Africa. Royal Botanic Gardens, Kew, 2nd edn. 1.

    Google Scholar 

  • Dane F., Hawkins L.K. and Norton J.D. 1998. New resistance to race 2 of Fusarium oxysporum f. sp. niveum in watermelon. Cucurbit Genet. Coop. Report 21: 37–39.

    Google Scholar 

  • De Winter B. 1990. A new species of Citrullus (Benincaseae) from the Namib desert, Namibia. Bothalia 20: 209–211.

    Google Scholar 

  • Gillaspie A.G. Jr and Wright J.M. 1993. Evaluation of Citrullus sp. germ plasm for resistance to watermelon Mosaic Virus 2. Plant Dis. 77: 352–354.

    Google Scholar 

  • Hashizume T., Sato T. and Hirai M. 1993. Determination of genetic purity of hybrid seed in watermelon (Citrullus lanatus) and tomato (Lycopersicon esculentum) using random amplified polymorphic DNA (RAPD). Jpn. J. Breed. 43: 367–375.

    Google Scholar 

  • Hashizume T., Skimamoto I., Harushima Y., Yui M., Sato T., Imai T. et al. 1996. Construction of a linkage map for watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] using random amplified polymorphic DNA (RAPD). Euphytica 90: 265–273.

    Google Scholar 

  • Jarret R.L., Merrick L.C., Holms T., Evans J. and Aradhya M.K. 1997. Simple sequence repeats in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Genome 40: 433–441.

    Google Scholar 

  • Jenkins S.F., Winstead N.N. and McCombs C.L. 1964. Pathogenic comparison of three new and four previously described races of Glomerella angulata var. orbiculare. Plant. Dis. Rptr. 48: 619–623.

    Google Scholar 

  • Katzir N., Danin-Poleg Y., Tzuri G., Karchi Z., Lavi U. and Creagan P.B. 1996. Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor. Appl. Genet. 93: 1282–1290.

    Google Scholar 

  • Lee S.J., Shin J.S., Park K.W. and Hong Y.P. 1996. Detection of genetic diversity using RAPD-PCR and sugar analysis in water melon [Citrullus lanatus (Thunb.) Mansf.] germplasm. Theor. Appl. Genet. 92: 719–725.

    Google Scholar 

  • Levi A., Rowland L.J. and Hartung J.S. 1993. Production of reliable randomly amplified polymorphic DNA (RAPD) markers from DNA of woody plants. HortScience 28: 1188–1190.

    Google Scholar 

  • Levi A. and Thomas C.E. 1999. An improved procedure for isolation of high quality DNA from watermelon and melon leaves. Cucurbit Genet. Coop. Report 22: 41–42.

    Google Scholar 

  • Martyn R.D. and Netzer D. 1991. Resistance to races 0, 1 and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. HortScience 26: 429–432.

    Google Scholar 

  • Meeuse A.D. 1962. The Cucurbitaceae of Southern Africa. Bothalia 8: 1–111.

    Google Scholar 

  • Navot N. and Zamir D. 1987. Isozyme and seed protein phylogeny of the genusCitrullus (Cucurbitaceae). Plant Syst. Evol. 156: 61–67.

    Google Scholar 

  • Navot N., Sarfatti M. and Zamir D. 1990. Linkage relationships of genes affecting bitterness and flesh color in watermelon. J. Hered. 81: 162–165.

    Google Scholar 

  • Nei M. and Li W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273.

    Google Scholar 

  • Netzer D. and Martyn R.D. 1989. PI 296341, a source of resistance in watermelon to race 2 of Fusarium oxysporum f. sp. niveum. Plant Disease 73: 518.

    Google Scholar 

  • Rohlf F.J. 1993. NTSYS-PC Numerical Taxonomy and Multi-variate Analysis System. Exter Publishing, Ltd., Setauket, New York, Version 2.00.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning. A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, N.Y.

    Google Scholar 

  • Simmons A.M. and Levi A. 2000. Evaluation of watermelon germplasm for resistance to Bemisia. Entomological Society of America Annual Meeting. Abstract No. 15611.

  • Sowell G. Jr 1975. An additional source of resistance to gummy stem blight in watermelon. Plant Dis. Reptr. 59: 413–415.

    Google Scholar 

  • Sowell G. Jr and Pointer G.R. 1962. Gummy stem blight resistance of introduced watermelons. Plant Dis. Reptr. 46: 883–885.

    Google Scholar 

  • Sowell G. Jr, Rhodes B.B. and Norton J.D. 1980. New Sources of resistance to watermelon anthracnose. J. Amer. Soc. Hort. Sci. 105: 197–199.

    Google Scholar 

  • Whitaker T.W. and Bemis W.B. 1976. Cucurbits. In: Simmonds N.W (ed.), Evolution of crop plants. Longman, London, pp. 64–69.

    Google Scholar 

  • Zamir D., Navot N. and Rudich J. 1984. Enzyme polymorphism in Citrullus lanatus andC. colocynthis in Israel and Sinai. Plant Syst. Evol. 146: 163–137.

    Google Scholar 

  • Zhang X.P., Rhodes B.B. and Skorupska H.S. 1994. RAPD molecular markers in watermelon. Cucurbit Genet. Coop. Report 17: 116–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, A., Thomas, C.E., Keinath, A.P. et al. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution 48, 559–566 (2001). https://doi.org/10.1023/A:1013888418442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013888418442

Navigation