Skip to main content
Log in

The Rhodobacter capsulatus genome

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The genome of Rhodobacter capsulatus has been completely sequenced. It consists of a single chromosome containing 3.5 Mb and a circular plasmid of 134 kb. This effort, started in 1992, began with a fine-structure restriction map of an overlapping set of cosmids that covered the genome. Cosmid sequencing led to a gapped genome that was filled by primer walking on the chromosome and by using lambda clones. Methods had to be developed to handle strong stops in the high GC (68%) inserts. Annotation was done with the ERGO system at Integrated Genomics, as was the reconstruction of the cell's metabolism. It was possible to recognize 3709 orfs of which functional assignments could be made with high confidence to 2392 (65%). Unusual features include the presence of numerous cryptic phage genomes embedded in the chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer CE and Bird TH (1996) Regulatory circuits controlling photosynthesis gene expression. Cell 85: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Isaacs NW, Howard TD, McLuskey K, Fraser NJ and Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181: 3869–3879

    PubMed  CAS  Google Scholar 

  • Cuypers H, Berghofer J and Zumft WG (1995) Multiple nosZ promoters and anaerobic expression of nos genes necessary for Pseudomonas stutzeri nitrous oxide reductase and assembly of its copper centers. Biochim Biophys Acta 1264: 183–190

    PubMed  Google Scholar 

  • Fonstein M and Haselkorn R (1993) Chromosomal structure of Rhodobacter capsulatus strain SB 1003: Cosmid encyclopedia and high resolution physical and genetic map. Proc Natl Acad Sci USA 90: 2522–2526

    Article  PubMed  CAS  Google Scholar 

  • Fonstein M, Zheng S and Haselkorn R (1992) Physical map of the genome of R. capsulatus SB1003. J Bacteriol 174: 4070–4077

    PubMed  CAS  Google Scholar 

  • Fonstein M, Koshy EG, Nikolskaya T, Mourachov P and Haselkorn R (1995) Refinement of the high resolution physical & genetic map of R. capsulatus and genome surveys using blots of the cosmid encyclopedia. EMBO J 14: 1827–1841

    PubMed  CAS  Google Scholar 

  • Gurgun V, Kirchner G and Pfennig N (1976) Fermentation of pyruvate by seven species of phototrophic purple bacteria. Z Allg Mikrobiol 16: 573–86

    PubMed  CAS  Google Scholar 

  • Lang AS and Beatty JT (2001) The gene transfer agent of Rhodobacter capsulatus and ‘constitutive transduction’ in prokaryotes. Arch Microbiol 175: 241–249

    Article  PubMed  CAS  Google Scholar 

  • Loach PA (2000) Supramolecular complexes in photosynthetic bacteria. Proc Natl Acad Sci USA 97: 5016–5018

    Article  PubMed  CAS  Google Scholar 

  • Pemberton JM, Horne IM and McEwan AG (1998) Regulation of photosynthetic gene expression in purple bacteria. Microbiol 144: 267–278

    Article  CAS  Google Scholar 

  • Schwintner C, Sabaty M, Berna B, Cahors S and Richaud P (1998) Plasmid content and localization of the genes encoding the denitrification enzymes in two strains of Rhodobacter sphaeroides. FEMS Microbiol Lett 165: 313–321

    Article  PubMed  CAS  Google Scholar 

  • Schobert M and Gorisch H (1999) Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: Cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145: 471–481

    PubMed  CAS  Google Scholar 

  • Vlcek C, Paces V, Maltsev N, Paces J, Haselkorn R and Fonstein M (1997) Sequence of a 189-kb segment of the chromosome of Rhodobacter capsulatus SB1003. Proc Natl Acad Sci USA 94: 9384–9388

    PubMed  CAS  Google Scholar 

  • Wiebrock A and Zumft WG (1987) Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri. J Bacteriol 169: 4577–4580

    Google Scholar 

  • Willis LB and Walker GC (1999) A novel Sinorhizobium meliloti operon encodes an α-glucosidase and a periplasmic-bindingprotein-dependent transport system for α-glucosides.J Bacteriol 181: 4176–4184

    PubMed  CAS  Google Scholar 

  • Yeliseev A and Kaplan S (2000) TspO of Rhodobacter sphaeroides. J Biol Chem 275: 5657–5667

    Article  PubMed  CAS  Google Scholar 

  • Youshinari T (1980) N2O reduction by Vibrio succinogenes. Appl Environ Microbiol 39: 81–84

    Google Scholar 

  • Zeilstra- Ryalls J, Gomelsky M, Eraso JM, Yeliseev A, O'Gara J and Kaplan S (1998) Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 180: 2801–2809

    PubMed  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61: 533–616

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Haselkorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haselkorn, R., Lapidus, A., Kogan, Y. et al. The Rhodobacter capsulatus genome. Photosynthesis Research 70, 43–52 (2001). https://doi.org/10.1023/A:1013883807771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013883807771

Navigation