Skip to main content
Log in

Electron Acceleration in the Heliosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review the evidence for electron acceleration in the heliosphere putting emphasis on the acceleration processes. There are essentially four classes of such processes: shock acceleration, reconnection, wave particle interaction, and direct acceleration by electric fields. We believe that only shock and electric field acceleration can in principle accelerate electrons to very high energies. The shocks known in the heliosphere are coronal shocks, traveling interplanetary shocks, CME shocks related to solar type II radio bursts, planetary bow shocks, and the termination shock of the heliosphere. Even in shocks the acceleration of electrons requires the action of wave particle resonances of which beam driven whistlers are the most probable. Other mechanisms of acceleration make use of current driven instabilities which lead to electron and ion hole formation. In reconnection acceleration is in the current sheet itself where the particles perform Speiser orbits. Otherwise, acceleration takes place in the slow shocks which are generated in the reconnection process and emanate from the diffusion region in the Petschek reconnection model and its variants. Electric field acceleration is found in the auroral zones of the planetary magnetospheres and may also exist on the sun and other stars including neutron stars. The electric potentials are caused by field aligned currents and are concentrated in narrow double layers which physically are phase space holes in the ion and electron distributions. Many of them add up to a large scale electric field in which the electrons may be impulsively accelerated to high energies and heated to large temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, K. A.: 1981, ‘Measurements of the Bow Shock Particles Upstream from the Earth’, j. Geophys. Res. 86, 4445.

    Google Scholar 

  • Anderson, K. A., Lin, R. P., Martel, F., Lin, C. S., Parks, G. K., and Rème, H.: 1979, ‘Thin Sheets of Energetic Electrons Upstream from Earth’s Bow Shock’, Geophys. Res. Lett. 6, 401.

    Google Scholar 

  • Aschwanden, M. J. and Treumann, R. A.: 1997, ‘Coronal and Interplanetary Particle Beams’, in G. Trottet (ed.), Coronal Physics from Radio and Space Observations, Springer, Berlin, p. 108.

    Google Scholar 

  • Balikhin, M. and Gedalin, M.: 1994, ‘Kinematic Mechanism of Electron Heating in Shocks: Theory Versus Obervations’, Geophys. Res. Lett. 21, 841.

    Google Scholar 

  • Cargill, P. J. and Papadopoulos, K.: 1988, ‘A Mechanism for Strong Shock Electron Heating in Supernova Remnants’, Astrophys. J. 329, L29.

    Google Scholar 

  • Chiu, Y. T. and Schulz, M.: 1978, ‘Self-consistent Particle and Parallel Electrostatic Field Distributions in the Magnetosphere-ionosphere Auroral Region’, J. Geophys. Res. 83, 629.

    Google Scholar 

  • Chupp, E.L.: 1990, ‘Transient Particle Acceleration Associated with Solar Flares’, Science 250, 229.

    Google Scholar 

  • Delory, G. T., Ergun, R. E., Carlson, C.W., Muschietti, L., Chaston, C. C., Peria, W., McFadden, J. P., and Strangeway, R.: 1998, ‘FAST Observations of Electron Distributions within AKR Source Regions’, Geophys. Res. Lett. 25, 2069.

    Google Scholar 

  • Dubouloz, N. and Scholer, M.: 1995, ‘Two-dimensional Simulations of Magnetic Pulsations Upstream of the Earth’s Bow Shock’, J. Geophys. Res. 100, 9461.

    Google Scholar 

  • Fitzenreiter, R. J.: 1995, ‘The Electron Foreshock’, Adv. Space Res. 15, 9.

    Google Scholar 

  • Gedalin, M., Gedalin, K., Balikhin, M., and Krassnosselskikh, V.: 1995, ‘Demagnetization of Electrons in the Electromagnetic Field Structure, Typical for Quasi-perpendicular Collisionless Shock Front’, J. Geophys. Res. 100, 9481.

    Google Scholar 

  • Gurnett, D. A.: 1974, ‘The Earth as a Radio Source: Terrestrial Kilometric Radiation’, J. Geophys. Res. 79, 4227.

    Google Scholar 

  • Gurnett, D. A. and Kurth, W. S.: 1996, ‘Radio Emission from the Outer Heliosphere’, Space Sci. Rev. 78, 53.

    Google Scholar 

  • Holman, G. D.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Particle Acceleration in Largescale DC Electric Fields’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, p. 135.

  • Hoshino, M., Aarons, J., Gallant, Y. A., and Langdon, A. B.: 1992, ‘Relativistic Magnetosonic Shock Waves in Sychrotron Sources: Shock Structure and Nonthermal Acceleration of Positrons’, Astrophys. J. 390, 454.

    Google Scholar 

  • Hoshino, M., Mukai, T., Nishida, A., Yamamoto, T., and Kokubun, S.: 2001, ‘Ion Dynamics in Magnetic Reconnection: Comparisons between Numerical Simulations and Geotail Observations’, J. Geophys. Res., (submitted).

  • Koyama, K., Petre, R., Gotthelf, E. V., Hwang, U., Matsura, M., Ozaki, M., and Holt, S. S.: 1995, ‘Evidence for Shock Acceleration of High-energy Electrons in the Supernova Remnant SN1006’, Nature 378, 255-258.

    Google Scholar 

  • Krimigis, S. M.: 1992, ‘Voyager Energetic Particle Observations at Interplanetary Shocks and Upstream of Planetary Bow Shocks — 1977–1990’, Space Sci. Rev. 59, 167.

    Google Scholar 

  • Levinson, A.: 1992, ‘Electron Injection in Collisionless Shocks’, Astrophys J. 401, 73.

    Google Scholar 

  • Lin, R. P.: 1997, in G. Trottet (ed.), ‘Observations of the 3D-Distributions of Thermal to Nearrelativistic Electrons in the Interplanetary Medium by the Wind Spacecraft’, in Coronal Physics from Radio and Space Observations, Springer-Verlag Berlin, p. 93.

    Google Scholar 

  • Litvinenko, Y. E.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Electron Acceleration by Strong DC Electric Fields in Impulsive Solar Flares’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, 167.

  • Lopate, C.: 1992, ‘Electron Injection in Collisionless Shocks’, J. Geophys. Res. 94, 9995.

    Google Scholar 

  • Mace, R. L.: 1998, ‘Whistler Instability Enhanced by Superthermal Electrons within the Earth’s Bow Shock’, J. Geophys. Res. 103, 14, 643.

    Google Scholar 

  • Mason, G. M., von Steiger, R., Decker, R. B., Desai, M. I., Dwyer, J. R., Fisk, L. A., Gloeckler, G., Gosling, J. T., Hilchenbach, M., Kallenbach, R., Keppler, E., Klecker, B., Kunow, H., Mann, G., Richardson, I. G., Sanderson, T. R., Simnett, G. M., Wang, Y.-M., Wimmer-Schweingruber, R. F., Fränz, M., and Mazur, J. E.: 1999, ‘Origin, Injection, and Acceleration of CIR Particles: Observations’, Space Sci. Rev. 89, 327.

    Google Scholar 

  • Orlowski, D. S., Russell, C. T., Krauss-Varban, D., Omidi, N., and Thomsen, M. F.: 1995, ‘Damping and Spectral Formation of Upstream Whistlers’, J. Geophys. Res. 100, 17, 117.

    Google Scholar 

  • Palmer, I. D.: 1982, ‘Transport Coefficients of Low-energy Cosmic Rays in Interplanetary Space’, Rev. Geophys. Space Phys. 20, 335.

    Google Scholar 

  • Papadopoulos, K.: 1988, ‘Electron Heating in Superhigh Mach Number Shocks’, Astrophys. Space Sci. 144, 535.

    Google Scholar 

  • Potter, D. G.: 1981, ‘Acceleration of Electrons by Interplanetary Shocks’, J. Geophys. Res. 86, 11, 111.

    Google Scholar 

  • Pritchett, P. L.: 1986, ‘The Electron-cyclotronMaser Instability in Relativistic Plasmas’, Phys. Fluids 29, 2919.

    Google Scholar 

  • Pyle, K. R., Simpson, J. A., Barnes, A., and Mihalov, J. D.: 1984, ‘Shock Acceleration of Nuclei and Electrons in the Heliosphere beyond 24 AU’, Astrophys. J. 282, L107.

    Google Scholar 

  • Rieger, E.: 1994, ‘Gamma Ray Precursors of Solar Flares’, Astroph. J. Suppl. 90, 645.

    Google Scholar 

  • Rieger, E. and Marschhäuser, H.: 1990, in R. M. Winglee and A. L. Kiplinger (eds.), ‘Electron Dominated Events during Solar Flares’, Max’91 Workshop No 3, University of Colorado, Boulder, CO, p. 68.

    Google Scholar 

  • Rieger, E. and Marschhäuser, H.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Spectral Evolution of an Intense Solar Gamma-ray Flare during Radio-silent Start’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, 407.

  • Rieger, E., Gan, W. Q., and Marschhäuser, H.: 1998, ‘Gamma-ray Line versus Continuum Emission of Electron-dominated Episodes during Solar Flares’, Solar Phys. 183, 123.

    Google Scholar 

  • Roelof, E. C., Simnett, G. M., and Tappin, S. J.: 1996, ‘The Regular Structure of Shock-accelerated ~ 40–100 keV Electrons in the High-latitude Heliosphere’, Astron. Astrophys. 316, 481.

    Google Scholar 

  • Roelof, E. C., Simnett, G. M., Sanderson, T. R., and Kunow, H.: 1999, ‘Global Structure, Observations and Challenges to Theory’, Space Sci. Rev. 89, 225.

    Google Scholar 

  • Scholer, M.: 1993, ‘UpstreamWaves, Shocklets, Short Large-amplitude Magnetic Structures and the Cyclic Behavior of Oblique Quasi-parallel Collisionless Shocks’, J. Geophys. Res. 98, 47.

    Google Scholar 

  • Sayle, K. A. and Simnett, G. M.: 1998, ‘High-latitude Ulysses Observations of CIR Accelerated Ions and Electrons’, Astron. Astrophys. 331, 405.

    Google Scholar 

  • Shay, M. A. and Drake, J. F.: 1998, ‘The Role of Electron Dissipation on the Rate of Collisionless Magnetic Reconnection’, Geophys. Res. Lett. 25, 3759.

    Google Scholar 

  • Shay, M. A., Drake, J. F., Denton, R. E., and Biskamp, D.: 1998, ‘Structure of the Dissipation Region during Collisionless Magnetic Reconnection’, J. Geophys. Res. 103, 9165.

    Google Scholar 

  • Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E.: 1999, ‘The Scaling of Collisionless, Magnetic Reconnection for Large Systems’, Geophys. Res. Lett. 26, 2163.

    Google Scholar 

  • Shimada, N.: 1998, ‘Diffusive Shock Acceleration Process of Electrons in the Solar Wind’, Ph.D. Thesis, Faculty of Science, University of Tokyo.

  • Shimada, N., Terasawa, T., Hoshino, M., Naito, T., Masui, H., Koi, T., Maezawa, K., and the GEOTAIL/LEP/MGF/HEP Teams: 1999, ‘Diffusive Shock Acceleration of Electrons at an Interplanetary Shock Observed on 21 Feb 1994’, Astrophys. Space Sci. 264, 481.

    Google Scholar 

  • Shimada, N. and Hoshino, M.: 2001, ‘Strong Electron Acceleration at high Mach Number Shock Waves: Simulation Study of Electron Dynamics’, Astrophys. J., (in press).

  • Simnett, G. M., Sayle, K. A., Roelof, E. C., and Tappin, S. J.: 1994, ‘Co-rotating Particle Enhancements out of the Ecliptic Plane’, Geophys. Res. Lett. 21, 1561.

    Google Scholar 

  • Sonnerup, B. U. Ö.: 1969, ‘Acceleration of Particles Reflected at a Shock Front’, J. Geophys. Res. 74, 1301.

    Google Scholar 

  • Treumann, R. A., Macek, W., and Izmodenov, V. I.: 1998, ‘Heliopause Radio Emission Scenario’, Astron. Astrophys. 336, L45.

    Google Scholar 

  • Wu, C.S.: 1984, ‘A Fast Fermi Process: Energetic Electrons Accelerated by a Nearly Perpendicular Bow Shock’, J. Geophys. Res. 89, 8857.

    Google Scholar 

  • Wu, C. S. and Lee, L. C.: 1979, ‘A Theory of the Terrestrial Kilometric Radiation’, Astrophys. J. 230, 621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treumann, R.A., Terasawa, T. Electron Acceleration in the Heliosphere. Space Science Reviews 99, 135–150 (2001). https://doi.org/10.1023/A:1013836813547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013836813547

Keywords

Navigation