Skip to main content
Log in

A novel PH-CT-COSY methodology for measuring JPH coupling constants in unlabeled nucleic acids. Application to HIV-2 TAR RNA

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A quantitative analysis of JPH scalar couplings in nucleic acids is difficult due to small couplings to phosphorus, the extreme overlap of the sugar protons and the fast relaxation of the spins involved in the magnetization transfer. Here we present a new methodology that relies on heteronuclear Constant Time Correlation Spectroscopy (CT-COSY). The three vicinal 3JPH3′, 3JPH5′ and 3JPH5′′ scalar couplings can be obtained by monitoring the intensity decay of the Pi-H3′i − 1 peak as a function of the constant time T in a 2D correlation map. The advantage of the new method resides in the possibility of measuring the two 3JPH5′ and 3JPH5′′ scalar couplings even in the presence of overlapped H5′/H5′′ resonances, since the quantitative information is extracted from the intensity decay of the P-H3′ peak. Moreover, the relaxation of the H3′ proton is considerably slower than that of the H5′/H5′′ geminal protons and the commonly populated conformations of the phosphate backbone are associated with large 3JPH3′ couplings and relatively small 3JPH5′ / H5′′. These two facts lead to optimal signal-to-noise ratio for the P-H3′ correlation compared to the P-H5′/H5′′ correlation.The heteronuclear CT-COSY experiment is suitable for oligonucleotides in the 10–15 kDa molecular mass range and has been applied to the 30mer HIV-2 TAR RNA. The methodology presented here can be used to measure P-H dipolar couplings (DPH) as well. We will present qualitative results for the measurement of P-Hbase and P-H2′ dipolar couplings in the HIV-2 TAR RNA and will discuss the reasons that so far precluded the quantification of the DPHs for the 30mer RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-ela, F., Karn, J. and Varani, G. (1996) Nucl. Acids Res., 24, 3974–3981.

    Google Scholar 

  • Bevington, P.R. and Robinson D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences, WCB/McGraw-Hill, U.S.A.

    Google Scholar 

  • Billeter, M., Neri, D., Otting, G., Qian, Y.Q. and Wüthrich, K. (1992) J. Biomol. NMR, 2, 257–274.

    Google Scholar 

  • Brodsky, A.S. and Williamson, J.R. (1997) J. Mol. Biol. 267, 624–639.

    Google Scholar 

  • Cavanagh, J. Fairbrother, W.J., Palmer, A.G. III and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego, CA, pp. 279–281.

    Google Scholar 

  • Clore, G.M., Murphy, E.C., Gronenborn, A.M. and Bax, A. (1998) J. Magn. Reson., 134, 164–167.

    Google Scholar 

  • Gotfredsen, C.H., Meissner, A., Duus, J. Ø. and Sørensen, O.W. (2000) Magn. Reson. Chem., 38, 692–695.

    Google Scholar 

  • Harbison, G.S. (1993) J. Am. Chem. Soc., 115, 3026–3027.

    Google Scholar 

  • Hennig, M. Carlomagno, T. and Williamson, J.R. (2001) J. Am. Chem. Soc., 123, 3395–3396.

    Google Scholar 

  • Hines, J.V., Varani, G., Landry, S.M. and Tinoco, Jr., I. (1993) J. Am. Chem. Soc., 115, 11002–11003.

    Google Scholar 

  • Herzfeld, J., Griffin, R.G. and Haberkorn, R.A. (1984) Biochemistry, 17, 2711–27184.

    Google Scholar 

  • Hu, W., Bouaziz, S., Skripkin, E. and Kettani, A. (1999) J. Magn. Reson., 139, 181–185.

    Google Scholar 

  • Kaikkonen, A. and Otting, G. (2001) J. Biomol. NMR, 19, 273–277.

    Google Scholar 

  • Lankhorst, P.P., Haasnoot, C.A., Erkelens, C. and Altona, C. (1984) J. Biomol. Struct. Dyn., 1, 1387–1405.

    Google Scholar 

  • Legault, P., Jucker, F.M. and Parti, A. (1995) FEBS Lett. 362, 156–160.

    Google Scholar 

  • Long, K.S. and Crothers, D.M. (1999) Biochemistry, 38, 10059–10069.

    Google Scholar 

  • Marino, J.P., Schwalbe, H., Glaser, S.J. and Griesienger, C. (1996) J. Am. Chem. Soc., 118, 4388–4395.

    Google Scholar 

  • Murthy, V.L., Srinivasan, R., Draper, D.E. and Rose, G.D. (1999) J. Mol. Biol., 291, 313–327.

    Google Scholar 

  • Norwood, T.J. (1993) J. Magn. Reson., A104, 106.

    Google Scholar 

  • Plavec, J. and Chattopadhyaya, J. (1995) Tetrahedron Lett., 36, 1949–1952.

    Google Scholar 

  • Puglisi, J.D., Tan, R., Calnan, B.J., Frankel, A.D. and Williamson, J.R. (1992) Science, 257, 76–80.

    Google Scholar 

  • Richter, C., Reif, B., Worner, K., Quant, S., Marino, J.P., Engels, J.W., Griesienger, C. and Schwalbe, H. (1998) J. Biomol. NMR, 12, 223–230.

    Google Scholar 

  • Saenger, W. (1984) Principles of Nucleic Acid Structure, Springer-Verlag, New York, NY.

    Google Scholar 

  • Schwalbe, H., Marino, J. P., King, G.C., Wechselberger, R., Bermel, W. and Griesienger C., (1994) J. Biomol. NMR, 4, 631–644.

    Google Scholar 

  • Schwalbe, H., Samstag, W., Engels, J.W., Bermel, W. and Griesienger, C. (1993) J. Biomol. NMR, 3, 479–486.

    Google Scholar 

  • Scott, L.G., Tolbert, T.J. and Williamson, J.R. (2000) Meth. Enzymol., 317, 18–38. 81

    Google Scholar 

  • Silver, M.S., Joseph, R.I. and Hoult, D.I. (1984) J. Magn. Reson., 59, 347.

    Google Scholar 

  • Sklenar, V. and Bax, A. (1987) J. Am. Chem. Soc., 109, 7525–7526.

    Google Scholar 

  • Sklenar, V., Miyashiro, H., Zon, G., Miles, H.T. and Bax, A. (1986) FEBS Lett., 208, 94–98.

    Google Scholar 

  • Szyperski, T., Ono, A., Fernandez, C., Iwai, H., Tate, S., Wüthrich, K. and Kainosho, M. (1997) J. Am. Chem. Soc., 119, 9901–9902.

    Google Scholar 

  • Tao, J. and Frankel, A.D. (1992) Proc. Natl. Acad. Sci. USA, 89, 2723–2726.

    Google Scholar 

  • Tao, J. and Frankel, A.D. (1993) Proc. Natl. Acad. Sci. USA, 90, 1571–1575.

    Google Scholar 

  • Tian, F., Bolon, P.J. and Prestegard, J.H. (1999) J. Am. Chem. Soc., 121, 7712–7713.

    Google Scholar 

  • Tolbert, T.J. and Williamson, J.R. (1996) J. Am. Chem. Soc., 118, 7929–7940.

    Google Scholar 

  • Tolbert, T.J. and Williamson, J.R. (1997) J. Am. Chem. Soc., 119, 12100–12108.

    Google Scholar 

  • Varani, G., Aboul-ela, F., Allain, F. and Gubser, C.C. (1995) J. Biomol. NMR, 5, 315–320.

    Google Scholar 

  • Vuister, G. W., Tessari, M., Karimi-Nejad, Y. and Whitehead, B. (1998) Modern Techniques in Protein NMR, Kluwer Academic/ Plenum Publishers, New York, pp. 204–212.

    Google Scholar 

  • Wijmenga, S.S. and van Buuren, B.N.M. (1998) Progr. Nucl. Magn. Reson. Spectrosc., 32, 87–387.

    Google Scholar 

  • Wu, Z. and Bax, A. (2001) J. Magn. Reson., 151, 242–252.

    Google Scholar 

  • Zacharias, M. and Hagerman, P.J. (1995) Proc. Natl. Acad. Sci. USA, 92, 6052–6056.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Williamson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlomagno, T., Hennig, M. & Williamson, J.R. A novel PH-CT-COSY methodology for measuring JPH coupling constants in unlabeled nucleic acids. Application to HIV-2 TAR RNA. J Biomol NMR 22, 65–81 (2002). https://doi.org/10.1023/A:1013811631477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013811631477

Navigation