Skip to main content
Log in

Mott–Hubbard Insulator in Infinite Dimensions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N.F. Mott, Proc. Phys. Soc. A 62, 416 (1949).

    Google Scholar 

  2. N.F. Mott, Metal—Insulator Transitions, 2nd edition (Taylor and Francis, London, 1990).

    Google Scholar 

  3. F. Gebhard, The Mott Metal—Insulator Transition (Springer, Berlin, 1997).

    Google Scholar 

  4. J. Hubbard, Proc. Roy. Soc. London Ser. A 276, 238 (1963); ibid. 277, 237 (1963).

    Google Scholar 

  5. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Google Scholar 

  6. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

    Google Scholar 

  7. W.F. Brinkman and T.M. Rice, Phys. Rev. B 2, 4302 (1970).

    Google Scholar 

  8. F. Gebhard and A.E. Ruckenstein, Phys. Rev. Lett. 68, 244 (1992); P.-A. Bares and F. Gebhard, Europhys. Lett. 29, 573 (1995).

    Google Scholar 

  9. A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Google Scholar 

  10. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Google Scholar 

  11. R.M. Noack and F. Gebhard, Phys. Rev. Lett. 82, 1915 (1999).

    Google Scholar 

  12. J. Schlipf, M. Jarrell, P.G.J. van Dongen, N. Blümer, S. Kehrein, Th. Pruschke, and D. Vollhardt, Phys. Rev. Lett. 82, 4890 (1999).

    Google Scholar 

  13. M.J. Rozenberg, R. Chitra, and G. Kotliar, Phys. Rev. Lett. 83, 3498 (1999).

    Google Scholar 

  14. W. Krauth, Phys. Rev. B 62, 6860 (2000).

    Google Scholar 

  15. R. Bulla, Phys. Rev. Lett. 83, 136 (1999).

    Google Scholar 

  16. R. Bulla, T.A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001).

    Google Scholar 

  17. R. Bulla and M. Potthoff, Eur. Phys. J. B 13, 257 (2000); Y. Ono, R. Bulla, A.C. Hewson, and M. Potthoff (unpublished; arXiv cond-mat/0103315).

    Google Scholar 

  18. G. Moeller, Q. Si, G. Kotliar, M.J. Rozenberg, and D.S. Fisher, Phys. Rev. Lett. 74, 2082 (1995).

    Google Scholar 

  19. D.E. Logan and P. Nozières, Phil. Trans. R. Soc. London A 356, 249 (1998); P. Nozières, Eur. Phys. J. B 6, 447 (1998).

    Google Scholar 

  20. S. Kehrein, Phys. Rev. Lett. 81, 3912 (1998).

    Google Scholar 

  21. A. Georges and G. Kotliar, Phys. Rev. Lett. 84, 3500 (2000); S. Kehrein, Phys. Rev. Lett. 84, 3501 (2000).

    Google Scholar 

  22. A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992); X.Y. Zhang, M.J. Rozenberg, and G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993).

    Google Scholar 

  23. Th. Pruschke, D.L. Cox, and M. Jarrell, Europhys. Lett. 21, 593 (1993); Phys. Rev. B 47, 3553 (1993); M. Jarrell, J.K. Freericks, and Th. Pruschke, Phys. Rev. B 51, 11704 (1995).

    Google Scholar 

  24. D.E. Logan, M.P. Eastwood, and M.A. Tusch, Phys. Rev. Lett. 76, 4785 (1996); J. Phys. Cond. Matt. 9, 4211 (1997); M.P. Eastwood, PhD thesis (Oxford University, UK, 1998; unpublished).

    Google Scholar 

  25. M.J. Rozenberg, G. Moeller, and G. Kotliar, Mod. Phys. Lett. B 8, 535 (1994).

    Google Scholar 

  26. M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).

    Google Scholar 

  27. L.M. Falicov and J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969).

    Google Scholar 

  28. W. Metzner, P. Schmit, and D. Vollhardt, Phys. Rev. B 45, 2237 (1992); W.F. Brinkman and T.M. Rice, Phys. Rev. B 2, 1324 (1970).

    Google Scholar 

  29. P.G.J. van Dongen and D. Vollhardt, Phys. Rev. Lett. 65, 1663 (1990); P.G.J. van Dongen, Phys. Rev. B 45, 2267 (1992).

    Google Scholar 

  30. E. Economou, Green's Functions in Quantum Physics, 2nd ed. (Springer, Berlin, 1983).

    Google Scholar 

  31. A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  32. T. Kato, Prog. Theor. Phys. 4, 154 (1949); A. Messiah, Quantum Mechanics, Vol. 2, § 16 (North-Holland, Amsterdam, 1962).

    Google Scholar 

  33. M. Takahashi, J. Phys. C 10, 1289 (1977).

    Google Scholar 

  34. The sign of t in D. Vollhardt, Phys. Rev. Lett. 65, 1663 (1990) Ref. 29 is opposite to our definition which can be cured by another particle-hole transformation.

    Google Scholar 

  35. E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

    Google Scholar 

  36. J. Hubbard, Proc. Roy. Soc. London 281, 401 (1964).

    Google Scholar 

  37. D.E. Logan, M.P. Eastwood, and M.A. Tusch, J. Phys. Cond. Matt. 10, 2673 (1998); D.E. Logan and M.T. Glossop, J. Phys. Cond. Matt. 12, 985 (2000); N.L. Dickens and D.E. Logan, Europhys. Lett. 54, 227 (2001); N.L. Dickens and D.E. Logan, J. Phys. Cond. Matt. 13, 4505 (2001).

    Google Scholar 

  38. D. Logan, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinowski, E., Gebhard, F. Mott–Hubbard Insulator in Infinite Dimensions. Journal of Low Temperature Physics 126, 979–1007 (2002). https://doi.org/10.1023/A:1013802910383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013802910383

Keywords

Navigation