Skip to main content
Log in

Protein Film Voltammetry: Revealing the Mechanisms of Biological Oxidation and Reduction

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

One of the most intriguing and important aspects of biological chemistry is how the deceptively simple process of electron transfer (ET) is utilized and organized by macromolecules that perform some of the most sophisticated chemistry known to man. The fundamental principles of ET are now fairly well understood, and interest is being focused instead on the mechanisms by which ET in proteins is coupled to chemical reactions such as ion transport and catalysis. Protein film voltammetry provides a powerful way to investigate these problems. The protein is immobilized on an electrode as an absorbed electroactive film and by applying a potential, electrons are driven in and out of the active sites. Signals are obtained from extremely small sample quantities (monolayer coverage or less), and from these it is possible to detect and characterize active sites and to resolve complex reactions. Experiments may be carried out over a wide dynamic range: for example, with cyclic voltammetry scan rates exceeding 1000 V/s can be used to observe coupling reactions that occur in the sub-millisecond time domain. For enzymes, fast cycles can be used to “trap” intermediates; alternatively steady-state catalysis and redox-linked activation can be studied using slow scan rates or potential step methods. This paper explains the concept of protein film voltammetry and illustrates how it can be applied to some complex problems in biological redox chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Armstrong, F.A., Heering, H.A., and Hirst, J., Chem. Soc. Rev., 1997, vol. 26, p. 169.

    Google Scholar 

  2. Lecompte, S., Wackerbarth, H., Soulimane, T., et al., J. Am. Chem. Soc., 1998, vol. 120, p. 7381.

    Google Scholar 

  3. Feng, Z.Q., Imabayashi, S., Kakiuchi, T., and Niki, K., J. Electroanal. Chem. Interfacial Electrochem., 1995, vol. 394, p. 149.

    Google Scholar 

  4. Nassar, A.–E., Zhang, Z., Fu, N., and Rusling, J.F., J. Phys. Chem. B, 1997, vol. 101, p. 2224.

    Google Scholar 

  5. Laviron, E., Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1982, vol. 12, p. 53.

    Google Scholar 

  6. Bond, A.M. and Oldham, K.B., J. Phys. Chem., 1983, vol. 87, p. 2492.

    Google Scholar 

  7. Heering, H.A., Weiner, J.H., and Armstrong, F.A., J. Am. Chem. Soc., 1997, vol. 120, p. 11628.

    Google Scholar 

  8. Heering, H.A., Hirst, J., and Armstrong, F.A., J. Phys. Chem. B, 1998, vol. 102, p. 6889.

    Google Scholar 

  9. Armstrong, F.A., Cox, P.A., Hill, H.A.O., et al., J. Electroanal. Chem., 1987, vol. 217, p. 331.

    Google Scholar 

  10. Krishtalik, L.I., Biochim. Biophys. Acta, 2000, vol. 1458, p. 6.

    Google Scholar 

  11. Williams, R.J.P., J. Theor. Biol., 1961, vol. 1, p. 1.

    Google Scholar 

  12. Fetter, J.R., Qian, J., Shapleigh, J., et al., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, p. 1604.

    Google Scholar 

  13. Shen, B., Martin, L.L., Butt, J.N., et al., J. Biol. Chem., 1993, vol. 268, p. 25 928.

    Google Scholar 

  14. Hirst, J., Duff, J.L.C., Jameson, G.N.L., et al., J. Am. Chem. Soc., 1998, vol. 120, p. 7085.

    Google Scholar 

  15. Chen, K., Hirst, J., Camba, R., et al., Nature, 2000, vol. 405, p. 814.

    Google Scholar 

  16. Armstrong, F.A., George, S.J., Thomson, A.J., and Yates, M.G., FEBS Lett., 1988, vol. 234, p. 107.

    Google Scholar 

  17. George, S.J., Richards, A.J.M., Thomson, A.J., and Yates, M.G., Biochem. J., 1984, vol. 224, p. 247.

    Google Scholar 

  18. Stephens, P.J., Jensen, G.M., Devlin, F.J., et al., Biochemistry, 1991, vol. 30, p. 3200.

    Google Scholar 

  19. Bentrop, D., Bertini, I., Borsari, M., et al., Angew. Chem. Int. Ed. Engl., 2000, vol. 39, p. 3620.

    Google Scholar 

  20. Stout, C.D., J. Biol. Chem., 1993, vol. 268, p. 25 920.

    Google Scholar 

  21. Stout, C.D., Stura, E.A., and McRee, D.E., J. Mol. Biol., 1998, vol. 278, p. 629.

    Google Scholar 

  22. Schipke, C.G., Goodin, D.B., McRee, D.E., and Stout, C.D., Biochemistry, 1999, vol. 38, p. 8228.

    Google Scholar 

  23. Luecke, H., Biochim. Biophys. Acta, 2000, vol. 1460, p. 133.

    Google Scholar 

  24. Hirst, J. and Armstrong, F.A., Anal. Chem., 1998, vol. 70, p. 5062.

    Google Scholar 

  25. Lubben, M., Prutsch, A., Mamat, B., and Gerwert, K., Biochemistry, 1999, vol. 38, p. 2048.

    Google Scholar 

  26. Ackrell, B.A.C., Johnson, M.K., Gunsalus, R.P., and Cecchini, G., Chemistry and Biochemistry of Flavoenzymes, Muller, F., Ed., Boca Raton: CRC, 1992, vol. 3, p. 229.

    Google Scholar 

  27. Iverson, T.M., Luna–Chavez, C., Cecchini, G., and Rees, D.C., Science, 1999, vol. 284, p. 1961.

    Google Scholar 

  28. Sucheta, A., Cammack, R., Weiner, J.H., and Armstrong, F.A., Biochemistry, 1993, vol. 32, p. 5455.

    Google Scholar 

  29. Sucheta, A., Ackrell, B.A., Cochran, B., and Armstrong, F.A., Nature, 1992, vol. 356, p. 361.

    Google Scholar 

  30. Ackrell, B.A.C., Armstrong, F.A., Cochran, B., et al., FEBS Lett., 1993, vol. 326, p. 92.

    Google Scholar 

  31. Hirst, J., Sucheta, A., Ackrell, B.A.C., and Armstrong, F.A., J. Am. Chem. Soc., 1996, vol. 118, p. 5031.

    Google Scholar 

  32. Hirst, J., Ackrell, B.A.C., and Armstrong, F.A., J. Am. Chem. Soc., 1996, vol. 119, p. 7434.

    Google Scholar 

  33. Pershad, H.R., Hirst, J., Cochran, B., et al., Biochim. Biophys. Acta, 1999, vol. 1412, p. 262.

    Google Scholar 

  34. Mairanovski, S.G., Klyukina, L.D., and Frumkin, A.N., Dokl. Akad. Nauk SSSR, 1961, vol. 141, p. 147.

    Google Scholar 

  35. Frumkin, A.N., Electrochim. Acta, 1964, vol. 9, p. 465.

    Google Scholar 

  36. Heffron, K., Léger, C., Rothery, R.A., et al., Biochemistry, 2001, vol. 40, p. 3117.

    Google Scholar 

  37. El Kasmi, A., Wallace, J.M., Bowden, E.F., et al., J. Am. Chem. Soc., 1998, vol. 120, p. 225.

    Google Scholar 

  38. Lvov, Y., Lu, Z., Schenkman, J.B., et al., J. Am. Chem. Soc., 1998, vol. 120, p. 4073.

    Google Scholar 

  39. Bayachou, M., Lin, R., Cho, W., and Farmer, P.J., J. Am. Chem. Soc., 1998, vol. 120, p. 9888.

    Google Scholar 

  40. Feng, Z.Q., Imabayashi, S., Kakiuchi, T., and Niki, K., J. Chem. Soc. Faraday Trans., 1997, vol. 93, p. 1367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, F.A. Protein Film Voltammetry: Revealing the Mechanisms of Biological Oxidation and Reduction. Russian Journal of Electrochemistry 38, 49–62 (2002). https://doi.org/10.1023/A:1013786328075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013786328075

Keywords

Navigation