Skip to main content
Log in

Crystal Face Specificity of Incipient Oxidation of Ag Single Crystal Electrodes in Acidic Aqueous Solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The onset of anodic oxidation of Ag single crystal face electrodes in acidic solution is investigated by means of capacitance and voltammetric curves. The potential of incipient oxidation is found to depend only slightly on the atomic density of the surface. On the other hand, a pre-monolayer oxidation peak is identified only for the (110) face in HClO4 while in H2SO4 it is suppressed. Results are interpreted in terms of anodic oxidation vs. anodic dissolution interference and anion adsorption vs. water oxidation competition. The behavior of the (110) face is explained on the basis of a model for water adsorption proposed for UHV experimental data. The higher reactivity of the (110) face toward water molecules supports the “hydrophilicity” scale of Ag crystal faces based on ionic and non-ionic adsorption data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Trasatti, S., Mater. Phys., 1985, vol. 12, p. 507; Russ. J. Electrochem., 1995, vol. 31, p. 713.

    Google Scholar 

  2. Trasatti, S. and Doubova, L.M., J. Chem. Soc. Faraday Trans., 1995, vol. 91, p. 3311.

    Google Scholar 

  3. Trasatti, S. and Lust, E., Modern Aspects of Electrochemistry, White, R.E., Bockris, J.O'M., and Conway, B.E., Eds., New York: Kluwer, 1999, vol. 33, p. 1.

    Google Scholar 

  4. Doubova, L.M. and Trasatti, S., J. Electroanal. Chem., 1999, vol. 467, p. 164.

    Google Scholar 

  5. Brug, G.J., Sluyters–Rehbach, M., Sluyters, J.H., and Hamelin, A., J. Electroanal. Chem., 1984, vol. 181, p. 245.

    Google Scholar 

  6. Doubova, L.M., De Battisti, A., Daolio, S., and Trasatti, S., J. Electroanal. Chem., 2001, vol. 500, p. 134.

    Google Scholar 

  7. Doubova, L. and Trasatti, S., Electrochim. Acta, 1997, vol. 42, p. 785.

    Google Scholar 

  8. Trasatti, S., J. Electroanal. Chem., 1992, vol. 329, p. 237.

    Google Scholar 

  9. Popov, A., Velev, O., Vitanov, T., and Tonchev, D., J. Electroanal. Chem., 1988, vol. 257, p. 95; Popov, A., Velev, O., and Vitanov, T., J. Electroanal. Chem., 1988, vol. 256, p. 405.

    Google Scholar 

  10. Valette, G., J. Electroanal. Chem., 1984, vol. 178, p. 179; J. Electroanal. Chem., 1987, vol. 230, p. 189.

    Google Scholar 

  11. Droog, J.M.M. and Huisman, F., J. Electroanal. Chem., 1980, vol. 115, p. 211.

    Google Scholar 

  12. Tilak, B.V., Perkins, R.S., Kozlowska, H.A., and Conway, B.E., Electrochim. Acta, 1972, vol. 17, p. 1447.

    Google Scholar 

  13. Hampson, N.A., Lee, J.B., and Morley, J.R., Electrochim. Acta, 1971, vol. 16, p. 637.

    Google Scholar 

  14. Alonso, C., Salvarezza, R.C., Vara, J.M., and Arvia, A.J., Electrochim. Acta, 1990, vol. 35, p. 489.

    Google Scholar 

  15. Dirkse, T.P., Electrochim. Acta, 1990, vol. 35, p. 1445.

    Google Scholar 

  16. Jiang, Z., Huang, S., and Qian, B., Electrochim. Acta, 1994, vol. 39, p. 2465.

    Google Scholar 

  17. Lopez–Teijelo, M., Vilche, J.R., and Arvia, A.J., J. Appl. Electrochem., 1988, vol. 18, p. 691.

    Google Scholar 

  18. Hecht, D., Borthen, P., and Strehblow, H.–H., J. Electroanal. Chem., 1995, vol. 381, p. 113.

    Google Scholar 

  19. Gomez Becerra, J., Salvarezza, R., and Arvia, A.J., Electrochim. Acta, 1990, vol. 35, p. 595.

    Google Scholar 

  20. Chen, S., Wu, B., and Cha, C., J. Electroanal. Chem., 1997, vol. 420, p. 111.

    Google Scholar 

  21. Savinova, E.R., Wasle, S., and Doblhofer, K., Electrochim. Acta, 1998, vol. 44, p. 1341.

    Google Scholar 

  22. Droog, J.M.M., J. Electroanal. Chem., 1980, vol. 115, p. 225.

    Google Scholar 

  23. Savinova, E.R., Kraft, P., Pettinger, B., and Doblhofer, K., J. Electroanal. Chem., 1997, vol. 430, p. 47.

    Google Scholar 

  24. Jovič, B.M., Jovič, V.D., and Stafford, G.R., Electrochem. Commun., 1999, vol. 1, p. 247.

    Google Scholar 

  25. Marinkovič, N.S., Marinkovič, J.S., and Adzič R.R., J. Electroanal. Chem., 1999, vol. 467, p. 291.

    Google Scholar 

  26. Dickertmann, D., Koppitz, F.D., and Schultze, J.W., Electrochim. Acta, 1976, vol. 21, p. 967.

    Google Scholar 

  27. Nguyen van Huong, G., Hinnen, C., and Lecoeur, J., J. Electroanal. Chem., 1980, vol. 106, p. 185.

    Google Scholar 

  28. Bange, K., Madey, T.E., and Sass, J.K., Surf. Sci., 1985, vol. 152/153, p. 550.

    Google Scholar 

  29. Barteau, M.A. and Madix, R.J., Surf. Sci., 1984, vol. 140, p. 108.

    Google Scholar 

  30. Stuve, E.M., Madix, R.J., and Sexton, B.A., Surf. Sci., 1981, vol. 111, p. 11.

    Google Scholar 

  31. Klaua, M. and Madey, T.E., Surf. Sci., 1984, vol. 136, p. L42.

    Google Scholar 

  32. Bange, K., Madey, T.E., Sass, J.K., and Stuve, E.M., Surf. Sci., 1987, vol. 183, p. 334.

    Google Scholar 

  33. Tkachenko, S.V., Fedorovich, N.V., and Danilov, A.I., Russ. J. Electrochem., 1998, vol. 34, p. 517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doubova, L.M., Daolio, S., Pagura, C. et al. Crystal Face Specificity of Incipient Oxidation of Ag Single Crystal Electrodes in Acidic Aqueous Solution. Russian Journal of Electrochemistry 38, 20–28 (2002). https://doi.org/10.1023/A:1013778126258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013778126258

Keywords

Navigation