Skip to main content
Log in

Dilation and Intercalation of Gases Within Carbon Nanostructures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a study of the mutual effects of the interactions between an adsorbed gas and an adsorbing porous environment when the possible expansion of the pore is considered. In particular, we have studied the dilation of a carbon nanotube bundle when quantum gases are absorbed within the interstitial channels and also the possibility of gas (H2 and 4He) intercalation between two graphene planes when the distance between them is allowed to change. We find that the dilation of the bundle increases significantly the binding energy of adsorption while intercalation between two graphene sheets is energetically unfavorable for both gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A.C. Dillon and M.J. Heben, Appl. Phys. A 72, 133 (2001); M.S. Dresselhaus, Williams K.A., Eklund P.C., MRS Bulletin 24, 45 (1999); Q.Y. Wang, S.R. Challa, D.S. Sholl, J.K. Johnson, Phys. Rev. Lett. 82, 956 (1999).

    Article  ADS  Google Scholar 

  2. M.M. Calbi, M.W. Cole, S.M. Gatica, M.J. Bojan, and G. Stan, to be published, cond-mat/0103607.

  3. M. Muris, N. Dupont-Pavlovsky, and M. Bienfait (to be published).

  4. Y. Ye et al, Appl. Phys. Lett. 74, 2307 (1999).

    Article  ADS  Google Scholar 

  5. C. Park et al, J. Phys. Chem. B 103, 10572 (1999).

    Article  Google Scholar 

  6. E. Polturak and Y. Eckstein, Phys. Rev. Lett. 58, 2680 (1987).

    Article  ADS  Google Scholar 

  7. M.M. Calbi, F. Toigo, and M.W. Cole, Phys. Rev. Lett. 86, 5062 (2001).

    Article  ADS  Google Scholar 

  8. G. Stan, M.J. Bojan, S. Curtarolo, S.M. Gatica, and M.W. Cole, Phys. Rev. B 62, 2173 (2000).

    Article  ADS  Google Scholar 

  9. The specific inputs we use in the expression for the total energy are discussed in detail in M.M. Calbi, F. Toigo, and M.W. Cole, Phys. Rev. Lett. 86, 5062 (2001) Ref. 7. Diffusion Monte Carlo calculations of H2 within a narrow tube 10 and inside interstitial channels of a bundle 11 show that the energy per particle of H2 inside the channel is well approximated by such a quasi-1D expression for bundles of tubes of this size (NT radius ≈ 7 Å). The coefficient k in the NT-NT interaction is derived from a semiempirical NT interaction which is consistent with the experimental value of the interlayer force of graphite 12. This estimate provides an upper bound for k since the lattice structure of neighboring tubes is likely not commensurate, making the tubes more free to move apart.

    Article  ADS  Google Scholar 

  10. M.C. Gordillo, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 85, 2348 (2000).

    Article  ADS  Google Scholar 

  11. M.C. Gordillo, J. Boronat, and J. Casulleras, to be published.

  12. See A. Mizel et al., Phys. Rev. B 60, 3264 (1999), and references therein.

    Article  ADS  Google Scholar 

  13. A. Aharony, in Phase transitions and critical phenomena, Vol. 6, edited by C. Domb and M.S. Green, Academic Press (1976); B.I. Halperin and C.M. Varma, Phys. Rev. B 14, 4030 (1976).

  14. L.W. Bruch, Milton W. Cole and Eugene Zaremba, Physical Adsorption: Forces and Phenomena, Clarendon Press, Oxford (1997), p. 75; R. Kern and M. Krohn, Physica Status Solidi A 116, 23 (1989).

    Google Scholar 

  15. J. Dupont-Roc, M. Himbert, N. Pavloff and J. Treiner, J. Low Temp. Phys. 81, 31 (1990).

    Article  ADS  Google Scholar 

  16. X.-Z. Ni and L.W. Bruch, Phys. Rev. B 33, 4584 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calbi, M.M., Toigo, F. & Cole, M.W. Dilation and Intercalation of Gases Within Carbon Nanostructures. Journal of Low Temperature Physics 126, 179–186 (2002). https://doi.org/10.1023/A:1013747724321

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013747724321

Keywords

Navigation