Skip to main content
Log in

Bis(dimethyldithiocarbamato)(pyridine)zinc and -copper(II) and Their Benzene Solvates: EPR and Solid-State Natural Abundance (13C, 15N) CP/MAS NMR

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Adducts of bis(dimethyldithiocarbamato)zinc and -copper(II) complexes with pyridine, [M(Py)(Mdtc)2], and their benzene solvates [M(Py)(Mdtc)2] · 0.5C6H6 were synthesized. The electron paramagnetic resonance method and solid-state 13C and 15N CP/MAS NMR spectroscopy were used to perform a comparative study of the compounds obtained. The EPR data showed that the geometry of Cu(II) coordination polyhedra both in the adduct itself [Cu(Py)(Mdtc)2], and in its solvate, [Cu(Py)(Mdtc)2] · 0.5C6H6 is intermediate between a square pyramid (SP) and a trigonal bipyramid (TBP), the contribution from the latter being dominant (∼75%) in [Cu(Py)(Mdtc)2]. In the solvated adduct [Cu(Py)(Mdtc)2] · 0.5C6H6, the copper(II) polyhedron is distorted to form an SP-enriched structure (the contribution from TBP is reduced to 55%). It was found NMR data that [Zn(Py)(Mdtc)2] exists in a single high-symmetry molecular form. Coordinated pyridine molecule shows molecular motion about the Zn–N bond. The solvation of the adduct results in structural nonequivalence of the Mdtcligands in [Zn(Py)(Mdtc)2] · 0.5C6H6. Signals in the 15N NMR spectra were assigned to the structural positions of the atoms in the previously described molecular structure of a solvated adduct. It was found that the heterogeneous reaction of adduct formation during the absorption of pyridine from the gas phase by polycrystalline [Zn2(Mdtc)4] species is accompanied by the dissociation of binuclear molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Byr'ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.

    Google Scholar 

  2. Ivanov, A.V., Mitrofanova, V.I., Kritikos, M., and Antzutkin, O.N., Polyhedron, 1999, vol. 18, no. 15, p. 2069.

    Google Scholar 

  3. Malik, M.A., Motevalli, M., and O'Brien, P., Polyhedron, 1999, vol. 18, nos. 8-9, p. 1259.

    Google Scholar 

  4. Ivanov, A.V., Kritikos, M., Antsutkin, O.N., et al., Koord. Khim., 1998, vol. 24, no. 9, p. 689.

    Google Scholar 

  5. Ivanov, A.V., Kritikos, M., Lund, A., et al., Zh. Neorg. Khim., 1998, vol. 43, no. 9, p. 1482.

    Google Scholar 

  6. Ivanov, A.V., Kritikos, M., Antsutkin, O.N., et al., Koord. Khim., 1999, vol. 25, no. 8, p. 583.

    Google Scholar 

  7. Ivanov, A.V., Kritikos, M., Antsutkin, O.N., and Lund, A., Zh. Neorg. Khim., 1999, vol. 44, no. 10, p. 1689.

    Google Scholar 

  8. Ivanov, A.V., Forsling, W., Antsutkin, O.N., et al., Dokl. Akad. Nauk, 1999, vol. 366, no. 5, p. 643.

    Google Scholar 

  9. Ivanov, A.V., Forsling, W., Kritikos, M., and Antsutkin, O.N., Koord. Khim., 2000, vol. 26, no. 1, p. 56.

    Google Scholar 

  10. Fraser, K.A. and Harding, M.M., Acta Crystallogr., 1967, vol. 22, p. 75.

    Google Scholar 

  11. Pines, A., Gibby, M.G., and Waugh, J.S., J. Chem. Phys., 1972, vol. 56, no. 4, p. 1776.

    Google Scholar 

  12. Earl, W.L. and Van der Hart, D.L., J. Magn. Reson., 1982, vol. 48, no. 1, p. 35.

    Google Scholar 

  13. Ratcliffe, C.I., Ripmeester, J.A., and Tse, J.S., Chem. Phys. Lett., 1983, vol. 99, no. 2, p. 177.

    Google Scholar 

  14. Mason, J., Encyclopedia of Nuclear Magnetic Resonance, Grant, D.M. and Harris, R.K., Eds., New York: Wiley, 1996, vol. 5, p. 3222.

    Google Scholar 

  15. Ovchinnikov, I.V. and Konstantinov, V.N., J. Magn. Reson., 1978, vol. 32, p. 179.

    Google Scholar 

  16. Rieger Ph.H., Electron Spin Resonance (Senior Reporter Symons M.C.R.), Newcastle upon Tyne: Athenaeum, 1993, p. 178.

    Google Scholar 

  17. Arriortua, M.A., Mesa, J.L., Rojo, T., et al., Inorg. Chem., 1988, vol. 27, no. 17, p. 2976.

    Google Scholar 

  18. Ivanov, A.V., Forsling, V., Antsutkin, O.N., and Novikova, E.V., Koord. Khim., 2001, vol. 27, no. 3, p. 174.

    Google Scholar 

  19. Johnson, L.-R.F. and Jankowski, W.C., Carbon-13 NMR-Spectra. A Collection of Assigned, Coded and Indexed Spectra, New York: Wiley, 1972.

  20. Levy, G.C., Lichter, R.L., and Nelson, G.L., Carbon-13 Nuclear Magnetic Resonance Spectroscopy, New York: Wiley, 1980, chap. 2, p. 72.

  21. Hexem, J.G., Frey, M.H., and Opella, S.J., J. Chem. Phys., 1982, vol. 77, no. 7, p. 3847.

    Google Scholar 

  22. Harris, R.K., Jonsen, P., and Packer, K.J., Magn. Reson. Chem., 1985, vol. 23, p. 565.

    Google Scholar 

  23. Ivanov, A.V., Forsling, V., Kritikos, M., et al., Dokl. Akad. Nauk, 1999, vol. 369, no. 1, p. 64.

    Google Scholar 

  24. Higgins, G.M.C. and Saville, B., J. Chem. Soc., 1963, no. 3, p. 2812.

  25. Hauptmann, S., Graefe, J., and Remane, H., Lehrbuch der organischen Chemie, Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, 1979. Translated under the title Organicheskaya khimiya, Moscow: Khimiya, 1979.

    Google Scholar 

  26. Klug, H.P., Acta Crystallogr., 1966, vol. 21, no. 4, p. 536.

    Google Scholar 

  27. Ramalingam, K., bin Shawkataly, O., Fun, H.-K., and Abdul Razak, I., Z. Kristallogr., 1998, vol. 213, no. 2, p. 371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.V., Lutsenko, I.A. & Forsling, W. Bis(dimethyldithiocarbamato)(pyridine)zinc and -copper(II) and Their Benzene Solvates: EPR and Solid-State Natural Abundance (13C, 15N) CP/MAS NMR. Russian Journal of Coordination Chemistry 28, 57–63 (2002). https://doi.org/10.1023/A:1013720022120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013720022120

Keywords

Navigation