Skip to main content
Log in

Far-Infrared Spectra, Conformational Stability, Barriers to Internal Rotation, Ab Initio Calculations, r0 Structural Parameters, and Vibrational Assignment of Ethyl Methyl Ether

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The far-infrared spectra (350–35 cm−1) of gaseous ethyl methyl ether-d 0 and ethyl methyl-d 3-ether have been recorded at a resolution of 0.10 cm−1. For the d 0 species, the fundamental asymmetric torsion of the more stable trans conformer (two methyl moieties are trans to one another) has been observed at 115.40 cm−1 with four upper state transitions falling to lower frequency, whereas, for the gauche form, it has been observed at 93.56 cm−1 with two excited states falling to lower frequency. the corresponding series for the d 3 species start from 106.00 and 87.10 cm−1, respectively. From these data, the asymmetric torsional potential coefficients for the d 0 species have been determined to be: V 1 = 572 ± 30; V 2 = 85 ± 8; V 3 = 619 ± 30; V 4 = 175 ± 18, and V 6 = −28 ± 3 cm−1. The trans to gauche and gauche to gauche barriers were calculated to be 958 cm−1 (11.5 kJ/mol) and 631 cm−1 (7.55 kJ/mol), respectively, with an energy difference of 550 ± 6 cm−1 (6.58 ± 0.07 kJ/mol). Utilizing three conformer pairs, variable temperature studies (−105 to −150°C) of the infrared spectra of the d 0 sample dissolved in liquid krypton gave an enthalpy difference of 547 ± 28 cm−1 (6.54 ± 0.33 kJ/mol) with the trans conformer the more stable rotamer. It is estimated that there is only 4% of the gauche conformer present at ambient temperatures. The structural parameters, conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio gradient predictions from RHF/6-31G* and with full electron correlation at the MP2 level with three different basis sets. The adjusted r 0 structural parameters have been obtained for the trans conformer from combined ab initio MP2/6-311+G** predictions and previously reported microwave rotational constants. The reported distances should be accurate to 0.003 Å and the angles to 0.5°. These results are compared to the corresponding quantities obtained for some similar molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. McKean, D. C.; Torto, I.; Morrisson, A. R. J. Mol. Struct. 1983, 99, 101.

    Google Scholar 

  2. Durig, J. R.; Liu, J.; Guirgis, G. A.; van der Veken, B. J. Struct. Chem. 1993, 4, 103.

    Google Scholar 

  3. Guirgis, G. A.; van der Veken, B. J.; Liu, J.; Durig, J. R. Spectrochim. Acta 1993, 49A, 1947.

    Google Scholar 

  4. van der Veken, B. J.; Guirgis, G. A.; Liu, J.; Durig, J. R. J. Raman Spectrosc. 1992, 23, 205.

    Google Scholar 

  5. Durig, J. R.; Compton, D. A. C. J. Chem. Phys. 1978, 68, 4713.

    Google Scholar 

  6. Hayashi, M.; Kuwada, K. J. Mol. Struct. 1975, 28, 147.

    Google Scholar 

  7. Hayashi, M.; Adachi, M. J. Mol. Struct. 1982, 78, 53.

    Google Scholar 

  8. Oyanagi, K.; Kuchitsu, K. Bull. Chem. Soc. Jpn. 1978, 51, 2237.

    Google Scholar 

  9. Perchard, J. P. Spectrochim. Acta 1970, 26A, 707.

    Google Scholar 

  10. Perchard, J. P. J. Mol. Struct. 1970, 6, 457.

    Google Scholar 

  11. Claguev, A. D. H.; Danti, A. Spectrochim. Acta 1968, 24A, 439.

    Google Scholar 

  12. Kitagawa, T.; Ohno, K.; Sugeta, H.; Miyazawa, T. Bull. Chem. Soc. Jpn. 1972, 45, 969.

    Google Scholar 

  13. Kitagawa, T.; Miyazawa, T. Bull. Chem. Soc. Jpn. 1968, 41, 1976.

    Google Scholar 

  14. Kitagawa, T.; Kusaki, K.; Miyazawa, T. Bull. Chem. Soc. Jpn. 1973, 46, 3685.

    Google Scholar 

  15. Snyder, R. G.; Zerbi, G. Spectrochim. Acta 1967, 23A, 391.

    Google Scholar 

  16. Furic, K.; Durig, J. R. Appl. Spectrosc. 1988, 42, 175.

    Google Scholar 

  17. Bulanin, M. O. J. Mol. Struct. 1973, 19, 59.

    Google Scholar 

  18. van der Veken, B. J.; Demunck, F. R. J. Chem Phys. 1992, 97, 3060.

    Google Scholar 

  19. Bulanin, M. O. J. Mol. Struct. 1995, 347, 73.

    Google Scholar 

  20. Herrabout, W. A.; van der Veken, B. J.; Wang, A.; Durig, J. R. J. Phys. Chem. 1995, 99, 578.

    Google Scholar 

  21. Herrabout, W. A.; van der Veken, B. J. J. Phys. Chem. 1996, 100, 9671.

    Google Scholar 

  22. Gaussian 94 (Revision B. 3), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defress, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A., Gaussian Inc., Pittsburgh, PA, 1995.

    Google Scholar 

  23. Pulay, P. Mol. Phys. 1969, 17, 197.

    Google Scholar 

  24. Wilson, E. B. Jr.; Decius, J. C.; Cross, P. C. Molecular Vibrations, McGraw-Hill: New York, 1955.

    Google Scholar 

  25. Schachtschneider, J. H. Vibrational Analysis of Polyatomic Molecules, V and VI, Technical Reports No. 231-64 and 57-65; Shell Development Co., Houston, TX.

  26. Giurgis, G.; Zhu, X.; Yu, Z.; Durig, J. R. J. Phys. Chem. A. 2000, 104, 4383.

    Google Scholar 

  27. Frisch, M. J.; Yamagushi, Y.; Gaw, J. F.; Schaefer, H. F. III.; Binkley, J. S. J. Chem. Phys. 1986, 84, 531.

    Google Scholar 

  28. Amos, R. D. Chem. Phys. Lett. 1986, 124, 376.

    Google Scholar 

  29. Polavarapu, P. L. J. Phys. Chem. 1990, 94, 8106.

    Google Scholar 

  30. Chantry, G. W. In The Raman Effect; Anderson, A., ed., Marcel Dekker: New York, 1971; vol. 1, Chap. 2.

    Google Scholar 

  31. van derVeken, B. J.; Herrebout, W. A.; Durig, D. T.; Zhao, W.; Durig, J. R. J. Phys. Chem. A 1999, 103, 1976.

    Google Scholar 

  32. Klimkowski, V. J.; Siam, K.; Ewbank, J. D.; Schafer, L.; Geise, H. J.; van Alsenoy, C. J. Mol. Struct. 1985, 122, 67.

    Google Scholar 

  33. McKean, D. C. J. Mol. Struct. 1984, 113, 251.

    Google Scholar 

  34. Durig, D. T.; Li, Y.; Shen, S.; Durig, J. R. Spectrochim. Acta 2002, 58A, in press.

  35. Durig, J. R.; Tang, Q.; Phan, H. V. J. Mol. Struct. 1994, 320, 193.

    Google Scholar 

  36. Durig, J. R.; Tang, Q.; Phan, H. V. J. Raman Spectrosc. 1993, 24, 851.

    Google Scholar 

  37. Durig, J. R.; Liu, J.; Giurgis, G. A.; vander Veken, B. J. Struct. Chem. 1993, 4, 103.

    Google Scholar 

  38. Giurgis, G. A.; vander Veken, B. F.; Liu, J.; Durig, J. R. Spectrochim. Acta 1993, 49A, 1947.

    Google Scholar 

  39. vander Veken, B. J.; Giurgis, G. A.; Liu, J.; Durig, J. R. J. Raman Spectrosc. 1992, 23, 205.

    Google Scholar 

  40. Giurgis, G. A.; Zhu, X.; Durig, J. R. Struct. Chem. 1999, 10, 445.

    Google Scholar 

  41. Durig, J. R.; Zhu, X.; Shen, S. J. Mol. Struct. 2001, 570, 1.

    Google Scholar 

  42. Durig, J. R.; Drew, B. R.; Koomer, A.; Bell, S. Phys. Chem. Chem. Phys. 2001, 3, 766.

    Google Scholar 

  43. Durig, J. R.; Drew, B. R. J. Mol. Struct. 2001, 560, 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durig, J.R., Jin, Y., Phan, H.V. et al. Far-Infrared Spectra, Conformational Stability, Barriers to Internal Rotation, Ab Initio Calculations, r0 Structural Parameters, and Vibrational Assignment of Ethyl Methyl Ether. Structural Chemistry 13, 1–26 (2002). https://doi.org/10.1023/A:1013410428690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013410428690

Navigation