Skip to main content
Log in

A Simplified Kinetic Element Formulation for the Rotation of a Perturbed Mass-Asymmetric Rigid Body

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Euler's equations, describing the rotation of an arbitrarily torqued mass asymmetric rigid body, are scaled using linear transformations that lead to a simplified set of first order ordinary differential equations without the explicit appearance of the principal moments of inertia. These scaled differential equations provide trivial access to an analytical solution and two constants of integration for the case of torque-free motion. Two additional representations for the third constant of integration are chosen to complete two new kinetic element sets that describe an osculating solution using the variation of parameters. The elements' physical representations are amplitudes and either angular displacement or initial time constant in the torque-free solution. These new kinetic elements lead to a considerably simplified variation of parameters solution to Euler's equations. The resulting variational equations are quite compact. To investigate error propagation behaviour of these new variational formulations in computer simulations, they are compared to the unmodified equations without kinematic coupling but under the influence of simulated gravity-gradient torques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bond, V. R.: 1996, ‘A variation of parameters approach for the solution of the differential equations for the rotational motion of a rigid body’, In: Spaceflight Mechanics 1996: Proceedings of the AAS/AIAA Spaceflight Mechanics Conference, Vol. 93 of Advances in Astronautical sciences, San Diego, California, p. 1113 (full text not published).

  2. Briggs, K.: 1998, ‘The doubledouble extended-precision software library for C++’http://epidem13.plantsci.cam.ac.uk/"kbriggs/, Department of Plant Sciences, University of Cambridge, U.K.

    Google Scholar 

  3. Byrd, P. F. and Friedman, M. D.: 1971, Handbook of Elliptic Integrals for Engineers and Physicists, 2nd edn, revised, Springer-Verlag, Berlin.

    Google Scholar 

  4. Cayley, A.: 1890a, ‘A memoir on the problem of disturbed elliptical motion’, In: The Collected Mathematical Papers of Arthur Cayley, Cambridge, Cambridge University Press, England, Vol. III, pp. 270-292.

    Google Scholar 

  5. Cayley, A.: 1890b, ‘A memoir on the problem of the rotation of a solid body’, In: The Collected Mathematical Papers of Arthur Cayley, Cambridge, Cambridge University Press, England, Vol. III, pp. 475-504.

    Google Scholar 

  6. Donaldson, J. D. and Jezewski, D. J.: 1977, ‘An element formulation for perturbed motion about the center of mass’, Celest. Mech. 16(3), 367-387.

    Google Scholar 

  7. Goldstein, H.: 1980, Classical Mechanics, 2nd edn, Addison-Wesley, Philippines.

    Google Scholar 

  8. Kraige, L. G.: 1978, ‘The development and numerical testing of a variation of parameters approach to the arbitrarily torqued, asymmetric rigid body problem’, Technical ReportVPI-E-78-9, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  9. Kraige, L. G. and Junkins, J. L.: 1976, ‘Perturbation formulations for satellite attitude dynamics’, Celest. Mech. 13(1), 39-64.

    Google Scholar 

  10. Kraige, L. G. and Skaar, S. B.: 1977, ‘A variation of parameters approach to the arbitrarily torqued, asymmetric rigid body problem’, J. Astronaut. Sci. 25(3), 207-226.

    Google Scholar 

  11. Livneh, R. and Wie, B.: 1997, ‘New results for an asymmetric rigid body with constant body-fixed torques’, J. Guid. Contr. Dyn. 20(5), 873-881.

    Google Scholar 

  12. Mitchell, J. W.: 2000, ‘A Simplified Variation of Parameters Solution for the Motion of an Arbitrarily Torqued Mass Asymmetric Rigid Body’, PhD Thesis, University of Cincinnati.

  13. Mitchell, J. W. and Richardson, D. L.: 2000, ‘A simplified variation of parameters solution for the motion of an arbitrarily torqued mass asymmetric rigid body’, In: Astrodynamics 1999: Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Vol. 103 of Advances in Astronautical Sciences, San Diego, California, pp. 2489-2512.

  14. Richardson, D. L. and Mitchell, J. W.: 1999, ‘A simplified variation of parameters approach to Euler's equations’, ASME J. Appl. Mech. 66, 273-276.

    Google Scholar 

  15. Richardson, D. L., Schmidt, D. S. and Mitchell, J. W.: 1998, ‘Improved Chebyshev methods for the numerical integration of first-order differential equations’, In: Spaceflight Mechanics 1998: Proceedings of the AAS/AIAA Spaceflight Mechanics Conference, Vol. 99 of Advances in Astronautical Sciences, San Diego, California, pp. 1533-1544.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, J.W., Richardson, D.L. A Simplified Kinetic Element Formulation for the Rotation of a Perturbed Mass-Asymmetric Rigid Body. Celestial Mechanics and Dynamical Astronomy 81, 13–25 (2001). https://doi.org/10.1023/A:1013338517743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013338517743

Navigation